Protocols for Harvesting a Microbial Community Directly as a Biofilm for the Remediation of Oil Sands Process Water

Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The prevalence of inorganic pollutants co-contaminating sites with multiple organic pollutants complicates bioremediation efforts. For this reason, new methods are needed for bioremediation of co-contaminated sites. One strategy being explored is the use of microbial community biofilms. Biofilms offer advantages in bioremediation that their planktonic counterparts don’t. These advantages include: (1) the biofilm matrix provides protection from the rapid diffusion and penetration of toxins; (2) biofilms exist as a community with diverse metabolic potentials, increasing their ability to degrade a variety of xenobiotics; and (3) biofilm formation is an effective way to retain biomass in a bioreactor.

Here, we describe a robust method for harvesting and applying environmentally derived mixed-species biofilms for the remediation of contaminants – namely, naphthenic acids – from Oil sands process water (OSPW). OSPW is an alkaline mixture of clay, sand, and residual hydrocarbons. In addition, OSPW is rife with acutely and chronically toxic levels of heavy metals, polyaromatic hydrocarbons, and naphthenic acids.

Currently, we have established facile methods for harvesting a microbial mixed-species biofilm in a high-throughput device – the Calgary Biofilm Device (CBD) – and on various wastewater treatment support materials using a modified CBD. We have observed that the established biofilm can then be used to inoculate an ex situ bioreactor. To date, we have established that our biofilm-inoculated bioreactor maintains the capacity to degrade a mixture of commercially available naphthenic acids at concentrations exceeding those found in OSPW over a 30-day period.

Altogether, this chapter will provide a template for an easy and effective example of how biofilms can be used to remediate organic pollutants in co-contaminated sites.

Keywords

Biofilms Bioreactor Bioremediation Naphthenic acids Oil sands process water 

References

  1. 1.
    Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeter Biodegr 35:317–327CrossRefGoogle Scholar
  2. 2.
    Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol 99:5296–5308CrossRefPubMedGoogle Scholar
  3. 3.
    Chen K-F, Kao C-M, Chen C-W, Surampalli RY, Lee M-S (2010) Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. J Environ Sci 22:864–871CrossRefGoogle Scholar
  4. 4.
    Kao C, Chien H, Surampalli R, Chien C, Chen C (2009) Assessing of natural attenuation and intrinsic bioremediation rates at a petroleum-hydrocarbon spill site: laboratory and field studies. J Environ Eng 136:54–67CrossRefGoogle Scholar
  5. 5.
    Kostka JE, Prakash O, Overholt WA et al (2011) Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lu Z, Deng Y, Van Nostrand JD et al (2012) Microbial gene functions enriched in the deepwater horizon deep-sea oil plume. ISME J 6:451–460CrossRefPubMedGoogle Scholar
  7. 7.
    Pritchard PH, Mueller JG, Rogers JC, Kremer FV, Glaser JA (1992) Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3:315–335CrossRefGoogle Scholar
  8. 8.
    Prince RC, Bragg JR (1997) Shoreline bioremediation following the Exxon Valdez oil spill in Alaska. Bioremediat J 1:97–104CrossRefGoogle Scholar
  9. 9.
    Liang X, Devine CE, Nelson J, Sherwood Lollar B, Zinder S, Edwards EA (2013) Anaerobic conversion of chlorobenzene and benzene to CH4 and CO2 in bioaugmented microcosms. Environ Sci Technol 47:2378–2385CrossRefPubMedGoogle Scholar
  10. 10.
    Richardson RE (2013) Genomic insights into organohalide respiration. Curr Opin Biotechnol 24:498–505CrossRefPubMedGoogle Scholar
  11. 11.
    Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89CrossRefPubMedGoogle Scholar
  12. 12.
    Lors C, Damidot D, Ponge J-F, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17CrossRefPubMedGoogle Scholar
  13. 13.
    Tyagi M, da Fonseca MM, de Carvalho CCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241CrossRefPubMedGoogle Scholar
  14. 14.
    Demeter MA, Lemire J, George I, Yue G, Ceri H, Turner RJ (2014) Harnessing oil sands microbial communities for use in ex situ naphthenic acid bioremediation. Chemosphere 97:78–85CrossRefPubMedGoogle Scholar
  15. 15.
    McKenzie N, Yue S, Liu X, Ramsay BA, Ramsay JA (2014) Biodegradation of naphthenic acids in oils sands process waters in an immobilized soil/sediment bioreactor. Chemosphere 109:164–172CrossRefPubMedGoogle Scholar
  16. 16.
    Cunningham JA, Rahme H, Hopkins GD, Lebron C, Reinhard M (2001) Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environ Sci Technol 35:1663–1670CrossRefPubMedGoogle Scholar
  17. 17.
    Ramos D, da Silva M, Chiaranda H, Alvarez PJ, Corseuil H (2013) Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Biodegradation 24:333–341CrossRefPubMedGoogle Scholar
  18. 18.
    Liao C-S, Chen L-C, Chen B-S, Lin S-H (2010) Bioremediation of endocrine disruptor di-n-butyl phthalate ester by Deinococcus radiodurans and Pseudomonas stutzeri. Chemosphere 78:342–346CrossRefPubMedGoogle Scholar
  19. 19.
    He Z, Xiao H, Tang L, Min H, Lu Z (2013) Biodegradation of di-n-butyl phthalate by a stable bacterial consortium, HD-1, enriched from activated sludge. Bioresour Technol 128:526–532CrossRefPubMedGoogle Scholar
  20. 20.
    Amor L, Kennes C, Veiga MC (2001) Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresour Technol 78:181–185CrossRefPubMedGoogle Scholar
  21. 21.
    Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111:1093–1101CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Galarneau E, Hollebone BP, Yang Z, Schuster J (2014) Preliminary measurement-based estimates of PAH emissions from oil sands tailings ponds. Atmos Environ 97:332–335CrossRefGoogle Scholar
  24. 24.
    Kannel PR, Gan TY (2012) Naphthenic acids degradation and toxicity mitigation in tailings wastewater systems and aquatic environments: a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1–21CrossRefPubMedGoogle Scholar
  25. 25.
    Armstrong SA, Headley JV, Peru KM, Mikula RJ, Germida JJ (2010) Phytotoxicity and naphthenic acid dissipation from oil sands fine tailings treatments planted with the emergent macrophyte Phragmites australis. J Environ Sci Health A Tox Hazard Subst Environ Eng 45:1008–1016CrossRefPubMedGoogle Scholar
  26. 26.
    Quesnel DM, Bhaskar IM, Gieg LM, Chua G (2011) Naphthenic acid biodegradation by the unicellular alga Dunaliella tertiolecta. Chemosphere 84:504–511CrossRefPubMedGoogle Scholar
  27. 27.
    Han X, MacKinnon MD, Martin JW (2009) Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS. Chemosphere 76:63–70CrossRefPubMedGoogle Scholar
  28. 28.
    Del Rio LF, Hadwin AK, Pinto LJ, MacKinnon MD, Moore MM (2006) Degradation of naphthenic acids by sediment micro-organisms. J Appl Microbiol 101:1049–1061CrossRefPubMedGoogle Scholar
  29. 29.
    Clemente JS, MacKinnon MD, Fedorak PM (2004) Aerobic biodegradation of two commercial naphthenic acids preparations. Environ Sci Technol 38:1009–1016CrossRefPubMedGoogle Scholar
  30. 30.
    Lu X-Y, Zhang T, Fang H-P (2011) Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol 89:1357–1371CrossRefPubMedGoogle Scholar
  31. 31.
    Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L (2011) Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review. Environ Sci Pollut Res Int 18:12–30CrossRefPubMedGoogle Scholar
  32. 32.
    Saidi-Mehrabad A, He Z, Tamas I et al (2013) Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME J 7:908–921CrossRefPubMedGoogle Scholar
  33. 33.
    Gargouri B, Karray F, Mhiri N, Aloui F, Sayadi S (2014) Bioremediation of petroleum hydrocarbons-contaminated soil by bacterial consortium isolated from an industrial wastewater treatment plant. J Chem Technol Biotechnol 89:978–987CrossRefGoogle Scholar
  34. 34.
    Wang X-B, Chi C-Q, Nie Y et al (2011) Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour Technol 102:7755–7761CrossRefPubMedGoogle Scholar
  35. 35.
    Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207CrossRefPubMedGoogle Scholar
  36. 36.
    Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938CrossRefPubMedGoogle Scholar
  37. 37.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108CrossRefPubMedGoogle Scholar
  38. 38.
    Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185:1485–1491CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fang L, Wei X, Cai P et al (2011) Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresour Technol 102:1137–1141CrossRefPubMedGoogle Scholar
  40. 40.
    d’Abzac P, Bordas F, Joussein E, van Hullebusch ED, Lens PN, Guibaud G (2013) Metal binding properties of extracellular polymeric substances extracted from anaerobic granular sludges. Environ Sci Pollut Res Int 20:4509–4519CrossRefPubMedGoogle Scholar
  41. 41.
    Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P (2002) Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol Bioeng 80:289–296CrossRefPubMedGoogle Scholar
  42. 42.
    Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367CrossRefPubMedGoogle Scholar
  43. 43.
    Todhanakasem T, Sangsutthiseree A, Areerat K, Young GM, Thanonkeo P (2014) Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. N Biotechnol 31:451–459CrossRefPubMedGoogle Scholar
  44. 44.
    Hansen SK, Rainey PB, Haagensen JA, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445:533–536CrossRefPubMedGoogle Scholar
  45. 45.
    Burmolle M, Ren D, Bjarnsholt T, Sorensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91CrossRefPubMedGoogle Scholar
  46. 46.
    Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36:990–1004CrossRefPubMedGoogle Scholar
  47. 47.
    Schwering M, Song J, Louie M, Turner RJ, Ceri H (2013) Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection. Biofouling 29:917–928CrossRefPubMedGoogle Scholar
  48. 48.
    McBain AJ (2009) In vitro biofilm models: an overview. In: Allen IL, Sima S, Geoffrey MG (eds) Advances in applied microbiology. Academic, San Diego, pp 99–132Google Scholar
  49. 49.
    Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484CrossRefPubMedGoogle Scholar
  50. 50.
    Golby S, Ceri H, Gieg LM, Chatterjee I, Marques LLR, Turner RJ (2012) Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond. FEMS Microbiol Ecol 79:240–250CrossRefPubMedGoogle Scholar
  51. 51.
    Gavrilescu M, Macoveanu M (2000) Attached-growth process engineering in wastewater treatment. Bioprocess Eng 23:95–106CrossRefGoogle Scholar
  52. 52.
    Nicolella C, van Loosdrecht MC, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80:1–33CrossRefPubMedGoogle Scholar
  53. 53.
    Wilderer PA, McSwain BS (2004) The SBR and its biofilm application potentials. Water Sci Technol 50:1–10PubMedGoogle Scholar
  54. 54.
    Sundar K, Sadiq IM, Mukherjee A, Chandrasekaran N (2011) Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor. J Hazard Mater 196:44–51CrossRefPubMedGoogle Scholar
  55. 55.
    Chang WC, Hsu GS, Chiang SM, Su MC (2006) Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. Bioresour Technol 97:1503–1508CrossRefPubMedGoogle Scholar
  56. 56.
    Costley SC, Wallis FM (2001) Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor. Water Res 35:3715–3723CrossRefPubMedGoogle Scholar
  57. 57.
    Quagraine EK, Peterson HG, Headley JV (2005) In situ bioremediation of naphthenic acids contaminated tailing pond waters in the athabasca oil sands region—demonstrated field studies and plausible options: a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 40:685–722CrossRefPubMedGoogle Scholar
  58. 58.
    Harrison JJ, Ceri H, Yerly J et al (2006) The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol Proc Online 8:194–215CrossRefGoogle Scholar
  59. 59.
    Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Loffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765–2774CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Harrison JJ, Stremick CA, Turner RJ, Allan ND, Olson ME, Ceri H (2010) Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat Protoc 5:1236–1254CrossRefPubMedGoogle Scholar
  61. 61.
    Harrison JJ, Turner RJ, Ceri H (2005) High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiol 5:53CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp. doi:10.3791/2437 PubMedPubMedCentralGoogle Scholar
  63. 63.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  64. 64.
    Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776PubMedPubMedCentralGoogle Scholar
  65. 65.
    Rogers VV, Liber K, MacKinnon MD (2002) Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water. Chemosphere 48:519–527CrossRefPubMedGoogle Scholar
  66. 66.
    Scott AC, Young RF, Fedorak PM (2008) Comparison of GC–MS and FTIR methods for quantifying naphthenic acids in water samples. Chemosphere 73:1258–1264CrossRefPubMedGoogle Scholar
  67. 67.
    Yen T-W, Marsh WP, MacKinnon MD, Fedorak PM (2004) Measuring naphthenic acids concentrations in aqueous environmental samples by liquid chromatography. J Chromatogr A 1033:83–90CrossRefPubMedGoogle Scholar
  68. 68.
    Clemente JS, Fedorak PM (2005) A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere 60:585–600CrossRefPubMedGoogle Scholar
  69. 69.
    Merlin M, Guigard SE, Fedorak PM (2007) Detecting naphthenic acids in waters by gas chromatography–mass spectrometry. J Chromatogr A 1140:225–229CrossRefPubMedGoogle Scholar
  70. 70.
    Headley JV, Peru KM, Barrow MP (2009) Mass spectrometric characterization of naphthenic acids in environmental samples: a review. Mass Spectrom Rev 28:121–134CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Joe Lemire
    • 1
    • 2
  • Marc Demeter
    • 1
    • 2
  • Raymond J. Turner
    • 1
    • 2
  1. 1.Department of Biological SciencesUniversity of CalgaryCalgaryCanada
  2. 2.Biofilm Research Group, University of CalgaryCalgaryCanada

Personalised recommendations