Protocols for Ecological Risk Assessment Using the Triad Approach

  • Marlea WagelmansEmail author
  • Shakti Lieten
Part of the Springer Protocols Handbooks book series (SPH)


An ecological risk assessment of a contaminated site is usually based on a model approach using chemical analyses of soil, sediment or water. These methods take neither the biological availability of contaminants, combination toxicity nor ecological field effects into account. To overcome these limitations, the Triad approach has been developed for sediment by Chapman (Environ Toxicol Chem, 5:957–964, 1986) and adapted for soil by van der Waarde et al. (Effectiviteit van bioassays bij het monitoren en beoordelen van het milieurendement van in situ biorestauratie. NOBIS 96-1-13, 2000; TRIADE benadering voor beoordeling van bodemkwaliteit. NOBIS 98-1-28, 2000). This approach combines chemical data, toxicity testing and ecological data of a site to determine the effect of contamination on the ecosystem. In this protocol, the Triad approach is described for the evaluation of the ecological impact of petroleum hydrocarbons (PH) in soil. It has been shown that no theoretical standard threshold value can be derived for PH above which they will have a negative effect on the ecology. Depending on the type of oil, the composition of the oil mixture, but also environmental characteristics at a certain site, ecological effects can be found at both low and high concentrations. Site-specific research is needed in order to assess the need for remediation.


Bioassays Chemical analyses Ecological field observations Ecological risk assessment Petroleum hydrocarbons (PH) Triad approach 


  1. 1.
    Harmsen J, Hutter JW, Win T, Barnabas I, Wittle P, Hansen N, Sakai H (2005) Risk assessment for mineral oil: development of standardized analytical methods in soil and soil-like materials. Alterra-report 1225Google Scholar
  2. 2.
    Franken ROG, Baars AJ, Crommentuijn GH, Otte P (1999) Proposal for revised intervention values for petroleum hydrocarbons on base of fractions of petroleum hydrocarbons. RIVM Rapport 711701015Google Scholar
  3. 3.
    Chapman PM (1986) Sediment quality criteria from the sediment quality Triad – an example. Environ Toxicol Chem 5:957–964CrossRefGoogle Scholar
  4. 4.
    Chapman E (2013) Ecological risk screening af metal (Pb and Zn) contaminated acidic soil using a Triad approach. Ph.D. thesis, Department of Biological and Environmental Sciences, University of GothenburgGoogle Scholar
  5. 5.
    Mesman M, Schouten A, Rutgers M (2011) Guideline Triad, Site-specific ecological research in step 3 of the Remediation Criterion, RIVM 607711003/2011Google Scholar
  6. 6.
    Ribé V, Aulenius E, Nehrenheim E, Martell U, Odlare M (2012) Applying the Triad method in a risk assessment of a former surface treatment and metal industry site. J Hazard Mater 207–208:15–20CrossRefPubMedGoogle Scholar
  7. 7.
    Sovari J, Schultz E, Haimi J (2013) Assessment of ecological risks at former landfill site using TRIAD procedure and multicriteria analysis. Risk Anal 33(2):203–219CrossRefGoogle Scholar
  8. 8.
    Protocol SIKB 2301 (2013) Conducting field work for Triad research at contaminated soilsGoogle Scholar
  9. 9.
    Jensen J, Mesman M (2006) Ecological risk assessment of contaminated land. Decision support for site specific investigations. ISBN 978-90-6960-138-0 RIVM BilthovenGoogle Scholar
  10. 10.
    Protocol NEN 5737 (2010) Soil - process of site specific ecological risk assessment of soil contaminationGoogle Scholar
  11. 11.
    Cuypers C, Grotenhuis T, Joziasse J, Rulkens W (2000) Rapid persulphate oxidation predicts PAH availability in soils and sediments. Environ Sci Tech 34:2057–2063CrossRefGoogle Scholar
  12. 12.
    van der Wal L (2003) Bioavailability of organic contaminants in soil: solid-phase microextraction predicts uptake in Oligochaetes (Thesis). IRAS, Utrecht University, UtrechtGoogle Scholar
  13. 13.
    van der Heijden SA, Jonker MTO (2009) PAH bioavailability in field sediments: comparing different methods for predicting in situ bioaccumulation. Environ Sci Tech 43:3757–3763CrossRefGoogle Scholar
  14. 14.
    Houba VJG, Temminghoff EJM, Gaikhorst GA, van Vark V (2000) Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci Plant Anal 31:1299–1396CrossRefGoogle Scholar
  15. 15.
    van Straalen NM, Denneman CAJ (1989) Ecotoxicological evaluation of soil quality criteria. Ecotoxicol Environ Saf 18:241–251CrossRefPubMedGoogle Scholar
  16. 16.
    Klepper O, Bakker J, Traas TP, van de Meent D (1998) Mapping the potentially affected fraction (PAF) of species as a basis for comparison of ecotoxicological risks between substances and regions. J Hazard Mater 61:337–344CrossRefGoogle Scholar
  17. 17.
    Posthuma L, Suter GW (2011) Ecological risk assessment of diffuse and local soil contamination using species sensitivity distributions. In: Swartjes F (ed) Dealing with contaminated sites – from theory towards practical application. Springer, Dordrecht, pp 625–692. ISBN 978-90-481-9756-9CrossRefGoogle Scholar
  18. 18.
    de Zwart D, Posthuma L (2005) Complex mixture toxicity for single and multiple species: proposed methodologies. Environ Toxicol Chem 24:2665–2676CrossRefPubMedGoogle Scholar
  19. 19.
    Durand-Huiting AM, Witteveen + Bos (2004) Optimal modelling for ecotoxicological assessment versie 5.0, RIZA werkdocument 2004.132X, changed, version 6.0, July 2006, F.P. van den Ende, RWS RIZAGoogle Scholar
  20. 20.
    Yeates GW, Bongers T, de Goede RMG, Freckman DW, Georgieva SS (1993) Feeding habitats in soil nematode families and genera. An outline for soil ecologists. J Nematol 25:315–331PubMedPubMedCentralGoogle Scholar
  21. 21.
    Bongers T (1988) The nematodes of the Netherlands. Stichting Uitgeverij van de natuurhistorische verenigingGoogle Scholar
  22. 22.
    Bongers T (1990) The maturity index. An ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19CrossRefGoogle Scholar
  23. 23.
    Waarde van der JJ, Derksen JGM, van der Hoek EE, Muijs B (2000) Effectiviteit van bioassays bij het monitoren en beoordelen van het milieurendement van in situ biorestauratie. NOBIS 96-1-13Google Scholar
  24. 24.
    McDonald BG, deBruyn AMH, Wernick BG, Patterson L, Pellerin N, Chapman PM (2007) Design and application of a transparent and scalable weight-of-evidence framework: an example from Wabamun Lake, Alberta, Canada. Integr Environ Assess Manag 3(4):476–483CrossRefPubMedGoogle Scholar
  25. 25.
    Rutgers M, Bogte JJ, Dirven-van Breemen EM, Schouten AJ (2001) Site specific ecological risk assessment, practical research by means of the TRIAD approach. RIVM 711701026/2001Google Scholar
  26. 26.
    Waarde van der JJ, Derksen JGM, Peekel AF, Keidel H, Bloem J, Siepel H (2000) TRIADE benadering voor beoordeling van bodemkwaliteit. NOBIS 98-1-28Google Scholar
  27. 27.
    Chen G, de Boer TE, Wagelmans M, van Gestel CA, van Straalen NM, Roelofs D (2014) Integrating transcriptomics into Triad-based soil-quality assessment. Environ Toxicol Chem 33(4):900–999Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Bioclear B.VGroningenThe Netherlands

Personalised recommendations