Skip to main content

Preservation of Microbial Pure Cultures and Mixed Communities

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Microorganisms are valuable and irreplaceable resources for scientific research and biotechnological innovation and should be safeguarded. Therefore, systematic preservation of isolated pure cultures, enriched mixed cultures, or environmental samples should become an integral part of good research practice. Cryopreservation of biological material is a low-tech, widely applicable way of long-term and stable storage. Its success is mostly dependent on the cryoprotective agent, used to protect cells from mechanical injuries due to ice formation, the stability of the freezing temperature, and the correct manipulations before and after storage. Although cryopreservation success can be organism dependent, the protocol described here proved successful for various fastidious pure and mixed cultures when frozen at −80°C using 5% (v/v) dimethyl sulfoxide as cryoprotective agent. Numerous parameters of the protocol can be changed or optimized, and guidelines are given to develop a custom-made cryopreservation protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emerson D, Wilson W (2009) Giving microbial diversity a home. Nature Rev Microbiol 7:758

    Article  CAS  Google Scholar 

  2. Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria – an essential prerequisite for biodiscovery. Microbial Biotechnol 3:564–575

    Article  CAS  Google Scholar 

  3. Stackebrandt E (2010) Diversification and focusing: strategies of microbial culture collections. Trends Microbiol 18:283–289

    Article  CAS  PubMed  Google Scholar 

  4. Cary SC, Fierer N (2014) The importance of sample archiving in microbial ecology. Nature Rev Microbiol 12:789–790

    Article  CAS  Google Scholar 

  5. Paoli PD (2005) Biobanking in microbiology: from sample collection to epidemiology, diagnosis and research. FEMS Microbiol Rev 29:897–910

    Google Scholar 

  6. Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of micro-organisms by drying: a review. J Microbiol Meth 66:183–193

    Article  CAS  Google Scholar 

  7. Smith D (2003) Culture collections over the world. Int Microbiol 6:95–100

    Article  PubMed  Google Scholar 

  8. Janssens D, Arahal DR, Bizet C, Garay E (2010) The role of public biological resource centers in providing a basic infrastructure for microbial research. Res Microbiol 16:422–429

    Article  Google Scholar 

  9. Vogelsang C, Gollenbiewski K, Ostgaard K (1999) Effect of preservation techniques on the regeneration of gel entrapped nitrifying sludge. Water Res 33:164–168

    Article  CAS  Google Scholar 

  10. Laurin V, Labbe N, Juteau P, Parent S, Villemur R (2006) Long-term storage conditions for carriers with denitrifying biomass of the fluidized, methanol-fed denitrification reactor of the Montreal Biodome, and the impact on denitrifying activity and bacterial population. Water Res 40:1836–1840

    Article  CAS  PubMed  Google Scholar 

  11. Rothrock MJ, Vanotti MB, Szögi AA, Gonzalez MCG, Fuji T (2011) Long-term preservation of anammox bacteria. Appl Microbiol Biotechnol 92:147–157

    Article  CAS  PubMed  Google Scholar 

  12. Heylen K, Ettwig K, Hu Z, Jetten M, Kartal B (2012) Rapid and simple cryopreservation of anaerobic ammonium-oxidizing bacteria. Appl Environ Microbiol 78:3010–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kerckhof FM, Courtens EN, Geirnaert A, Hoefman S, Ho A, Vilchez-Vargas R et al (2014) Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS One 9:e99517

    Article  PubMed  PubMed Central  Google Scholar 

  14. Smith D, Ryan MJ (2008) The impact of OECD best practices on the validation of cryopreservation techniques for microorganisms. CryoLetters 29:63–72

    CAS  PubMed  Google Scholar 

  15. Vekeman B, Hoefman S, De Vos P, Spieck E, Heylen K (2013) A generally applicable cryopreservation method for nitrite-oxidizing bacteria. Syst Appl Microbiol 36:579–584

    Article  CAS  PubMed  Google Scholar 

  16. Hoefman S, Van Hoorde K, Boon N, Vandamme P, De Vos P, Heylen K (2012) Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria. Plos One 7:e34196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoefman S, Pommerening-Roser A, Samyn E, De Vos P, Heylen K (2013) Efficient cryopreservation protocol enables accessibility of a broad range of ammonia-oxidizing bacteria for the scientific community. Res Microbiol 164:288–292

    Article  CAS  PubMed  Google Scholar 

  18. Hubàlek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229

    Article  PubMed  Google Scholar 

  19. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247:125–142

    Google Scholar 

  20. Tindall BJ (2007) Vacuum-drying and cryopreservation of prokaryotes. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, pp 73–98

    Chapter  Google Scholar 

  21. Food Safety and Inspection Service (2008) Most probable number procedures and tables. MLG Appendix 2.03. Microbiology Laboratory Guidebook. http://www.fsis.usda.gov/PDF/MLG_Appendix_2_03.pdf

  22. Baati L, Fabre-Gea C, Auriol D, Blanc PJ (2000) Study of the cryotolerance of Lactobacillus acidophilus: effect of culture and freezing conditions on the viability and cellular protein levels. Int J Food Microbiol 59:241–247

    Article  CAS  PubMed  Google Scholar 

  23. Stacey GN, Day JG (2007) Long-term ex situ conservation of biological resources and the role of biological resource centers. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, pp 1–14

    Chapter  Google Scholar 

  24. Pegg DE (2007) Principles of cryopreservation. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana, Totowa, pp 39–58

    Chapter  Google Scholar 

  25. Vandamme P, Pot B, Gillis M, Vos PD, Kerstens K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900

    Article  CAS  PubMed  Google Scholar 

  27. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  CAS  PubMed  Google Scholar 

  28. Baust JM (2002) Molecular mechanisms of cellular demise associated with cryopreservation failure. Cell Preserv Technol 1:17–31

    Article  CAS  Google Scholar 

  29. Fuller BJ (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25:375–388

    CAS  PubMed  Google Scholar 

  30. Siaterlis A, Deepika G, Charalampopoulos D (2009) Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. Lett Appl Microbiol 48:295–301

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Claeys L, Ha DVD, Verstraete W, Boon N (2010) Effects of chemically and electrochemically dosed chlorine on Escherichia coli and Legionella beliardensis assessed by flow cytometry. Appl Microbiol Biotechnol 87:331–341

    Google Scholar 

  32. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309:1–7

    CAS  PubMed  Google Scholar 

  33. Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the Central Baltic Sea. Appl Environ Microbiol 68:3978–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nichols D, Lewis K, Orjala J, Mo S, Ortenberg R, O’Connor P et al (2008) Short peptide induces an “uncultivable” microorganism to grow in vitro. Appl Environ Microbiol 74:4889–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Heylen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Vekeman, B., Heylen, K. (2015). Preservation of Microbial Pure Cultures and Mixed Communities. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_51

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_51

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45178-6

  • Online ISBN: 978-3-662-45179-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics