Introduction: Field and In Situ Studies

  • Roger C. PrinceEmail author
Part of the Springer Protocols Handbooks book series (SPH)


Mesocosms and microcosms provide an experimentally tractable way to study environmental processes under close to natural conditions while maintaining some control over gross physical processes. They also allow contaminants to be constrained for appropriate collection and disposal at the end of the experiment. This overview provides an extensive catalog of the literature on mesocosms and microcosms that have been used to study microbial responses to hydrocarbons; it should be a useful introduction for researchers entering the field.


Coastal Oil Spill Simulation System Constructed wetland Marine Ecosystems Research Laboratory OECD biodegradation tests 


  1. 1.
    ZoBell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10:1–49PubMedCentralGoogle Scholar
  2. 2.
    Ellis R, Adams RS (1961) Contamination of soils by petroleum hydrocarbons. Adv Agron 13:197–216CrossRefGoogle Scholar
  3. 3.
    Wang Z, Fingas M, Owens EH, Sigouin L, Brown CE (2001) Long-term fate and persistence of the spilled Metula oil in a marine salt marsh environment: Degradation of petroleum biomarkers. J Chromatogr A 926:275–290CrossRefGoogle Scholar
  4. 4.
    Elmgren R, Frithsen JB (1982) The use of experimental ecosystems for evaluating the environmental impact of pollutants: a comparison of an oil spill in the Baltic Sea and two long-term, low-level oil addition experiments in mesocosms. In: Grice GD, Reeve MR (eds) Marine mesocosms. Springer, Berlin, pp 153–165CrossRefGoogle Scholar
  5. 5.
    Gundlach ER, Boehm PD, Marchand M, Atlas RM, Ward DM, Wolfe DA (1983) The fate of Amoco Cadiz oil. Science 221:122–129PubMedCrossRefGoogle Scholar
  6. 6.
    Prince RC, Bragg JR (1997) Shoreline bioremediation following the Exxon Valdez oil spill in Alaska. Bioremediat J 1:97–104CrossRefGoogle Scholar
  7. 7.
    Rosenberg E, Legman R, Kushmaro A, Adler E, Abir H, Ron EZ (1996) Oil bioremediation using insoluble nitrogen source. J Biotechnol 51:273–278PubMedCrossRefGoogle Scholar
  8. 8.
    Pastor D, Sanchez J, Porte C, Albaigés J (2001) The Aegean Sea oil spill in the Galicia coast (NW Spain). I. Distribution and fate of the crude oil and combustion products in subtidal sediments. Mar Pollut Bull 42:895–904PubMedCrossRefGoogle Scholar
  9. 9.
    Hinga KR (2003) Degradation rates of low molecular weight PAH correlate with sediment TOC in marine subtidal sediments. Mar Pollut Bull 46:466–474PubMedCrossRefGoogle Scholar
  10. 10.
    Swannell RPJ, Mitchell D, Lethbridge G, Jones D, Heath D, Hagley M, Jones M, Petch S, Milne R, Croxford R, Lee K (1999) A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the Sea Empress incident. Environ Technol 20:863–873CrossRefGoogle Scholar
  11. 11.
    Maruyama A, Ishiwata H, Kitamura K, Sunamura M, Fujita T, Matsuo M, Higashihara T (2003) Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb Ecol 46:442–453PubMedCrossRefGoogle Scholar
  12. 12.
    Tsutsumi H, Kono M, Takai K, Manabe T, Haraguchi M, Yamamoto I, Oppenheimer C (2000) Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. III. Field tests of a bioremediation agent with microbiological cultures for the treatment of an oil spill. Mar Pollut Bull 40:320–324CrossRefGoogle Scholar
  13. 13.
    Bordenave S, Jezequel R, Fourçans A, Budzinski H, Merlin FX, Fourel T, Goni-Urriza M, Guyoneaud R, Grimaud R, Caumette P, Duran R (2004) Degradation of the “Erika” oil. Aquat Living Resour 17:261–268CrossRefGoogle Scholar
  14. 14.
    Jiménez N, Viñas M, Sabaté J, Díez S, Bayona JM, Solanas AM, Albaiges J (2006) The Prestige oil spill. 2. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environ Sci Technol 40:2578–2585PubMedCrossRefGoogle Scholar
  15. 15.
    Slater GF, Nelson RK, Kile BM, Reddy CM (2006) Intrinsic bacterial biodegradation of petroleum contamination demonstrated in situ using natural abundance, molecular-level 14C analysis. Org Geochem 37:981–989CrossRefGoogle Scholar
  16. 16.
    Yim UH, Ha SY, An JG, Won JH, Han GM, Hong SH, Kim M, Jung JH, Shim WJ (2011) Fingerprint and weathering characteristics of stranded oils after the Hebei Spirit oil spill. J Hazard Mater 197:60–69PubMedCrossRefGoogle Scholar
  17. 17.
    Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol 77:7962–7974PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Elango V, Urbano M, Lemelle KR, Pardue JH (2014) Biodegradation of MC252 oil in oil: sand aggregates in a coastal headland beach environment. Front Microbiol 5:161PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hester MW, Mendelssohn IA (2000) Long-term recovery of a Louisiana brackish marsh plant community from oil-spill impact: vegetation response and mitigating effects of marsh surface elevation. Mar Environ Res 49:233–254PubMedCrossRefGoogle Scholar
  20. 20.
    Natter M, Keevan J, Wang Y, Keimowitz AR, Okeke BC, Son A, Lee MK (2012) Level and degradation of Deepwater Horizon spilled oil in coastal marsh sediments and pore-water. Environ Sci Technol 46:5744–5755PubMedCrossRefGoogle Scholar
  21. 21.
    Mahmoudi N, Porter TM, Zimmerman AR, Fulthorpe RR, Kasozi GN, Silliman BR, Slater GF (2013) Rapid degradation of Deepwater Horizon spilled oil by indigenous microbial communities in Louisiana saltmarsh sediments. Environ Sci Technol 47:13303–13312PubMedCrossRefGoogle Scholar
  22. 22.
    Mills MA, Bonner JS, McDonald TJ, Page CA, Autenrieth RL (2003) Intrinsic bioremediation of a petroleum-impacted wetland. Mar Pollut Bull 46:887–899PubMedCrossRefGoogle Scholar
  23. 23.
    Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801PubMedCrossRefGoogle Scholar
  24. 24.
    Parisi VA, Brubaker GR, Zenker MJ, Prince RC, Gieg LM, da Silva MLB, Alvarez PJJ, Suflita JM (2009) Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site. Microb Biotechnol 2:202–212PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631PubMedCrossRefGoogle Scholar
  26. 26.
    Tischer K, Kleinsteuber S, Schleinitz KM, Fetzer I, Spott O, Stange F, Lohse U, Franz J, Neumann F, Gerling S, Schmidt C, Hasselwander E, Harms H, Wendeberg A (2013) Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer. Environ Microbiol 15:2603–2615PubMedCrossRefGoogle Scholar
  27. 27.
    Mohn W, Radziminski C, Fortin MC, Reimer K (2001) On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Appl Microbiol Biotechnol 57:242–247PubMedCrossRefGoogle Scholar
  28. 28.
    Paudyn K, Rutter A, Rowe RK, Poland JS (2018) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53:102–114CrossRefGoogle Scholar
  29. 29.
    Madsen EL, Sinclair JL, Ghiorse WC (1991) In situ biodegradation: microbiological patterns in a contaminated aquifer. Science 252:830–833PubMedCrossRefGoogle Scholar
  30. 30.
    Xiong W, Mathies C, Bradshaw K, Carlson T, Tang K, Wang Y (2012) Benzene removal by a novel modification of enhanced anaerobic biostimulation. Water Res 46:4721–4731PubMedCrossRefGoogle Scholar
  31. 31.
    Li P, Sun T, Stagnitti F, Zhang C, Zhang H, Xiong X, Allinson G, Ma X, Allinson M (2002) Field-scale bioremediation of soil contaminated with crude oil. Environ Engin Sci 19:277–289CrossRefGoogle Scholar
  32. 32.
    Jamison VW, Raymond RL, Hudson JO (1975) Biodegradation of high-octane gasoline in groundwater. Dev Ind Microbiol 16:305–312Google Scholar
  33. 33.
    Essaid HI, Bekins BA, Herkelrath WN, Delin GN (2011) Crude oil at the Bemidji site: 25 years of monitoring, modeling, and understanding. Ground Water 49:706–726PubMedCrossRefGoogle Scholar
  34. 34.
    Ostendorf DW, Kampbell DH (1991) Biodegradation of hydrocarbon vapors in the unsaturated zone. Water Resour Res 27:453–462CrossRefGoogle Scholar
  35. 35.
    Frankenberger WT, Emerson KD, Turner DW (1989) In situ bioremediation of an underground diesel fuel spill: a case history. Environ Manage 13:325–332CrossRefGoogle Scholar
  36. 36.
    Powell SM, Ferguson SH, Snape I, Siciliano SD (2006) Fertilization stimulates anaerobic fuel degradation of Antarctic soils by denitrifying microorganisms. Environ Sci Technol 40:2011–2017PubMedCrossRefGoogle Scholar
  37. 37.
    Höhener P, Dakhel N, Christophersen M, Broholm M, Kjeldsen P (2006) Biodegradation of hydrocarbons vapors: comparison of laboratory studies and field investigations in the vadose zone at the emplaced fuel source experiment, Airbase Værløse, Denmark. J Contam Hydrol 88:337–358PubMedCrossRefGoogle Scholar
  38. 38.
    Balba MT, Al-Daher R, Al-Awadhi N, Chino H, Tsuji H (1998) Bioremediation of oil-contaminated desert soil: the Kuwaiti experience. Environ Int 24:163–173CrossRefGoogle Scholar
  39. 39.
    Alejandro Prado-Jatar M, Brown MT (1997) Interface ecosystems with an oil spill in a Venezuelan tropical savannah. Ecol Eng 8:49–78CrossRefGoogle Scholar
  40. 40.
    Gomez F, Sartaj M (2013) Field scale ex-situ bioremediation of petroleum contaminated soil under cold climate conditions. Int Biodeter Biodegr 85:375–382CrossRefGoogle Scholar
  41. 41.
    Feris KP, Hristova K, Gebreyesus B, Mackay D, Scow KM (2004) A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community. Microb Ecol 48:589–600PubMedCrossRefGoogle Scholar
  42. 42.
    Leewis MC, Reynolds CM, Leigh MB (2013) Long-term effects of nutrient addition and phytoremediation on diesel and crude oil contaminated soils in subarctic Alaska. Cold Reg Sci Technol 96:129–137PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    White PM, Wolf DC, Thoma GJ, Reynolds CM (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220CrossRefGoogle Scholar
  44. 44.
    Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl Environ Microbiol 67:3127–3133PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wang Z, Xu Y, Zhao J, Li F, Gao D, Xing B (2011) Remediation of petroleum contaminated soils through composting and rhizosphere degradation. J Hazard Mater 190:677–685PubMedCrossRefGoogle Scholar
  47. 47.
    Mumford KA, Rayner JL, Snape I, Stark SC, Stevens GW, Gore DB (2013) Design, installation and preliminary testing of a permeable reactive barrier for diesel fuel remediation at Casey Station, Antarctica. Cold Reg Sci Technol 96:96–107CrossRefGoogle Scholar
  48. 48.
    Beškoski VP, Gojgić-Cvijović G, Milić J, Ilić M, Miletić S, Šolević T, Vrvić MM (2011) Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)–A field experiment. Chemosphere 83:34–40PubMedCrossRefGoogle Scholar
  49. 49.
    Dias R, Ruberto L, Hernández E, Vázquez SC, Lo Balbo A, Del Panno MT, Mac Cormack WP (2012) Bioremediation of an aged diesel oil-contaminated Antarctic soil: Evaluation of the “on site” biostimulation strategy using different nutrient sources. Int Biodeter Biodegr 75:96–103CrossRefGoogle Scholar
  50. 50.
    Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877PubMedPubMedCentralGoogle Scholar
  51. 51.
    MacNaughton S, Swannell R, Lethbridge G, Scott P, Norris G, Harries N, Hart A, Smith J (2005) SIReN: Site for innovative research on monitored natural attenuation. In: Thomson NR (ed) Bringing groundwater quality research to the watershed scale, vol 297. IAHS, Wallingford, pp 269–273Google Scholar
  52. 52.
    Schirmer M, Dahmke A, Dietrich P, Dietze M, Gödeke S, Richnow HH, Schirmer K, Weiß H, Teutsch G (2006) Natural attenuation research at the contaminated megasite Zeitz. J Hydrol 328:393–407CrossRefGoogle Scholar
  53. 53.
    Gieg LM, Kolhatkar RV, McInerney MJ, Tanner RS, Harris SH, Sublette KL, Suflita JM (1999) Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer. Environ Sci Technol 33:2550–2560CrossRefGoogle Scholar
  54. 54.
    Hutchins SR, Miller DE, Thomas A (1998) Combined laboratory/field study on the use of nitrate for in situ bioremediation of a fuel-contaminated aquifer. Environ Sci Technol 32:1832–1840CrossRefGoogle Scholar
  55. 55.
    Hunkeler D, Höhener P, Bernasconi S, Zeyer J (1999) Engineered in situ bioremediation of a petroleum hydrocarbon-contaminated aquifer: assessment of mineralization based on alkalinity, inorganic carbon and stable carbon isotope balances. J Contam Hydrol 37:201–223CrossRefGoogle Scholar
  56. 56.
    Bolliger C, Höhener P, Hunkeler D, Häberli K, Zeyer J (1999) Intrinsic bioremediation of a petroleum hydrocarbon-contaminated aquifer and assessment of mineralization based on stable carbon isotopes. Biodegradation 10:201–217PubMedCrossRefGoogle Scholar
  57. 57.
    Chen KF, Kao CM, Chen CW, Surampalli RY, Lee MS (2010) Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. J Environ Sci 22:864–871CrossRefGoogle Scholar
  58. 58.
    Raymond RL, Jamison VW, Hudson JO (1976) Beneficial stimulation of bacterial activity in groundwaters containing petroleum products. AlCHE Symp Ser 73:390–404Google Scholar
  59. 59.
    Sexstone A, Everett K, Jenkins T, Atlas RM (1978) Fate of crude and refined oils in North Slope soils. Arctic 31:339–347Google Scholar
  60. 60.
    Bergstein PE, Vestal JR (1978) Crude oil biodegradation in Arctic tundra ponds. Arctic 31:158–169CrossRefGoogle Scholar
  61. 61.
    Braddock JF, Lindstrom JE, Prince RC (2003) Weathering of a subarctic oil spill over 25 years: the Caribou-Poker Creeks research watershed experiment. Cold Reg Sci Technol 36:11–23CrossRefGoogle Scholar
  62. 62.
    Sergy GA, Blackall PJ (1987) Design and conclusions of the Baffin Island Oil Spill Project. Arctic 40(Suppl 1):1–9Google Scholar
  63. 63.
    Venosa AD, Suidan MT, Wrenn BA, Strohmeier KL, Haines JR, Eberhart BL, King D, Holder E (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol 30:1764–1775CrossRefGoogle Scholar
  64. 64.
    Sergy GA, Guénette CC, Owens EH, Prince RC, Lee K (2003) In-situ Treatment of Oiled Sediment Shorelines. Spill Sci Tech Bull 8:237–244CrossRefGoogle Scholar
  65. 65.
    Venosa AD, Lee K, Suidan MT, Garcia-Blanco S, Cobanli S, Moteleb M, Haines JR, Tremblay G, Hazelwood M (2002) Bioremediation and biorestoration of a crude oil-contaminated freshwater wetland on the St. Lawrence River. Bioremediat J 6:261–281CrossRefGoogle Scholar
  66. 66.
    Lee K, Li Z, Robinson B, Kepkay PE, Blouin M, Doyon B (2011) Field trials of in-situ oil spill countermeasures in ice-infested waters. International oil spill conference proceedings. Available at
  67. 67.
    Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418CrossRefGoogle Scholar
  68. 68.
    Horowitz A, Atlas RM (1977) Continuous open flow-through system as a model for oil degradation in the Arctic Ocean. Appl Environ Microbiol 33:647–653PubMedPubMedCentralGoogle Scholar
  69. 69.
    Kuiper J, De Wilde P, Wolff W (1984) Effects of an oil spill in outdoor model tidal flat ecosystems. Mar Pollut Bull 15:102–106CrossRefGoogle Scholar
  70. 70.
    Farke HK, Wonneberger WG, Dahlmann G (1985) Effects of oil and a dispersant on intertidal organisms in field experiments with a mesocosm, the Bremerhaven Caisson. Mar Environ Res 15:97–114CrossRefGoogle Scholar
  71. 71.
    Lee K, Tremblay GH, Cobanli SE (1995) Bioremediation of oiled beach sediments: assessment of inorganic and organic fertilizers. In International oil spill conference. American Petroleum Institute, Washington, pp 107–113Google Scholar
  72. 72.
    Cavanagh JE, Nichols PD, Franzmann PD, McMeekin TA (1998) Hydrocarbon degradation by Antarctic coastal bacteria. Antarct Sci 10:386–397CrossRefGoogle Scholar
  73. 73.
    Oudot J, Merlin FX, Pinvidic P (1998) Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar Environ Res 45:113–125CrossRefGoogle Scholar
  74. 74.
    Merlin FX, Pinvidic P, Chaumery C, Oudot J, Swannell RPJ, Basseres A, Dalmazzone C, Ducreux J, Lee K, Reilly T (1995) Bioremediation: results of the field trials of Landevennec (France). In International oil spill conference. American Petroleum Institute, Washington, pp 917–918Google Scholar
  75. 75.
    Delille D, Delille B, Pelletier E (2001) Effectiveness of bioremediation of crude oil contaminated sub-Antarctic intertidal sediment: the microbial response. Microb Ecol 44:118–126CrossRefGoogle Scholar
  76. 76.
    Prince RC, Bare RE, Garrett RM, Grossman MJ, Haith CE, Keim LG, Lee K, Holtom GJ, Lambert P, Sergy GA, Owens EH, Guénette CC (2003) Bioremediation of stranded oil on an Arctic shoreline. Spill Sci Technol Bull 8:303–312CrossRefGoogle Scholar
  77. 77.
    Le Floch S, Merlin FX, Guillerme M, Dalmazzone C, Le Corre P (1999) A field experimentation on bioremediation. Bioren Environ Technol 20:897–907CrossRefGoogle Scholar
  78. 78.
    Nayar S, Goh BPL, Chou LM (2005) Environmental impacts of diesel fuel on bacteria and phytoplankton in a tropical estuary assessed using in situ mesocosms. Ecotoxicology 14:397–412PubMedCrossRefGoogle Scholar
  79. 79.
    Delille D, Delille B (2000) Field observations on the variability of crude oil impact on indigenous hydrocarbon-degrading bacteria from sub-Antarctic intertidal sediments. Mar Environ Res 49:403–417PubMedCrossRefGoogle Scholar
  80. 80.
    Röling WFM, Milner MG, Jones DM, Fratepietro F, Swannell RPJ, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70:2603–2613PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Røberg S, Østerhus JI, Landfald B (2011) Dynamics of bacterial community exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidal beach. Polar Biol 34:1455–1465CrossRefGoogle Scholar
  82. 82.
    Xu R, Lau ANL, Lim YG, Obbard JP (2005) Bioremediation of oil-contaminated sediments on an inter-tidal shoreline using a slow-release fertilizer and chitosan. Mar Pollut Bull 51:1062–1070PubMedCrossRefGoogle Scholar
  83. 83.
    Egres AG, Martins CC, de Oliveira VM, da Cunha LP (2012) Effects of an experimental in situ diesel oil spill on the benthic community of unvegetated tidal flats in a subtropical estuary (Paranaguá Bay, Brazil). Mar Pollut Bull 64:2681–2691PubMedCrossRefGoogle Scholar
  84. 84.
    Harrison PJ, Cochlan WP, Acreman JC, Parsons TR, Thompson PA, Dovey HM, Xiaolin C (1986) The effects of crude oil and Corexit 9527 on marine phytoplankton in an experimental enclosure. Mar Environ Res 18:93–109CrossRefGoogle Scholar
  85. 85.
    Dahl E, Laake M, Tjessem K, Eberlein K, Bohle B (1983) Effects of Ekofisk crude oil on an enclosed planktonic ecosystem. Mar Ecol Prog Ser 14:81–91CrossRefGoogle Scholar
  86. 86.
    Grossi V, Massias D, Stora G, Bertrand JC (2002) Burial, exportation and degradation of acyclic petroleum hydrocarbons following a simulated oil spill in bioturbated Mediterranean coastal sediments. Chemosphere 48:947–954PubMedCrossRefGoogle Scholar
  87. 87.
    Suárez-Suárez A, López-López A, Tovar-Sánchez A, Yarza P, Orfila A, Terrados J, Arnds J, Marqués S, Niemann H, Schmitt-Kopplin P, Amann R, Rosselló-Móra R (2011) Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment. Environ Microbiol 13:1488–1499PubMedCrossRefGoogle Scholar
  88. 88.
    Brakstad OG, Nonstad I, Faksness LG, Brandvik PG (2008) Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol 55:540–552PubMedCrossRefGoogle Scholar
  89. 89.
    Munoz D, Doumenq P, Jacquot F, Scherrer P, Mille G (1997) Long term evolution of petroleum biomarkers in mangrove soil (Guadeloupe). Mar Pollut Bull 34:868–874CrossRefGoogle Scholar
  90. 90.
    Scherrer P, Mille G (1989) Biodegradation of crude oil in an experimentally polluted peaty mangrove soil. Mar Pollut Bull 20:430–432CrossRefGoogle Scholar
  91. 91.
    Oudot J, Dutrieux E (1998) Hydrocarbon weathering and biodegradation in a tropical estuarine ecosystem. Mar Environ Res 27:195–213CrossRefGoogle Scholar
  92. 92.
    Burns KA, Codi S, Duke NC (2000) Gladstone, Australia field studies: weathering and degradation of hydrocarbons in oiled mangrove and salt marsh sediments with and without the application of an experimental bioremediation protocol. Mar Pollut Bull 41:392–402CrossRefGoogle Scholar
  93. 93.
    Brito E, Duran R, Guyoneaud R, Goñi-Urriza M, Garcia de Oteyza T, Crapez MAC, Aleluia I, Wasserman JCA (2009) A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro, Brazil). Mar Pollut Bull 58:418–423PubMedCrossRefGoogle Scholar
  94. 94.
    Garcia-Blanco S, Venosa AD, Suidan MT, Lee K, Cobanli S, Haines JR (2007) Biostimulation for the treatment of an oil-contaminated coastal salt marsh. Biodegradation 18:1–15PubMedCrossRefGoogle Scholar
  95. 95.
    Tate PT, Shin WS, Pardue JH, Jackson WA (2011) Bioremediation of an experimental oil spill in a coastal Louisiana salt marsh. Water Air Soil Pollut 223:1115–1123CrossRefGoogle Scholar
  96. 96.
    Jézéquel R, Menot L, Merlin FX, Prince RC (2003) Natural cleanup of heavy fuel oil on rocks: an in situ experiment. Mar Pollut Bull 46:983–990PubMedCrossRefGoogle Scholar
  97. 97.
    Mills MA, Bonner JS, Page CA, Autenrieth RL (2004) Evaluation of bioremediation strategies of a controlled oil release in a wetland. Mar Pollut Bull 49:425–435PubMedCrossRefGoogle Scholar
  98. 98.
    Pasteris G, Werner D, Kaufmann K, Höhener P (2002) Vapor phase transport and biodegradation of volatile fuel compounds in the unsaturated zone: a large scale lysimeter experiment. Environ Sci Technol 36:30–39PubMedCrossRefGoogle Scholar
  99. 99.
    Höhener P, Hunkeler D, Hess A, Bregnard T, Zeyer J (1998) Methodology for the evaluation of engineered in situ bioremediation: lessons from a case study. J Microbiol Methods 32:179–192CrossRefGoogle Scholar
  100. 100.
    Yu Y, Zhang W, Chen G, Gao Y, Wang J (2014) Preparation of petroleum-degrading bacterial agent and its application in remediation of contaminated soil in Shengli Oil Field, China. Environ Sci Pollut Res 21:7929–7937CrossRefGoogle Scholar
  101. 101.
    Pizarro-Tobías P, Niqui JL, Roca A, Solano J, Fernández M, Bastida F, García C, Ramos JL (2014) Field trial on removal of petroleum-hydrocarbon pollutants using a microbial consortium for bioremediation and rhizoremediation. Environ Microbiol Rep. doi: 10.1111/1758-2229.12174 Google Scholar
  102. 102.
    Parsons TR (1974) Controlled ecosystem pollution experiment (CEPEX). Env Conserv 1:224–224CrossRefGoogle Scholar
  103. 103.
    Santschi PH (1985) The MERL mesocosm approach for studying sediment‐water interactions and ecotoxicology. Environ Technol 6:335–350CrossRefGoogle Scholar
  104. 104.
    Reilly TJ, Jamail R. (1997) COSS: A testing facility for oil spill research and development. In International oil spill conference. American Petroleum Institute, Washington, pp 996–998Google Scholar
  105. 105.
    USEPA (2012) A citizen’s guide to bioremediation. Accessed 11 November 2013
  106. 106.
    USGS (1997) Bioremediation: nature’s way to a cleaner environment. Accessed 11 November, 2013
  107. 107.
    Page DS, Foster JC, Fickett PM, Gilfillan ES (1988) Identification of petroleum sources in an area impacted by the Amoco Cadiz oil spill. Mar Pollut Bull 19:107–115CrossRefGoogle Scholar
  108. 108.
    Kvenvolden KA, Hostettler FD, Carlson PR, Rapp JB, Threlkeld CN, Warden A (1995) Ubiquitous tar balls with a California-source signature on the shorelines of Prince William Sound, Alaska. Environ Sci Technol 29:2684–2694PubMedCrossRefGoogle Scholar
  109. 109.
    Prince RC, Walters CC (2007) Biodegradation of oil and its implications for source identification. In: Wang Z, Stout SA (eds) Oil spill environmental forensics. Academic, Burlington, pp 349–379CrossRefGoogle Scholar
  110. 110.
    Kvenvolden KA, Cooper CK (2003) Natural seepage of crude oil into the marine environment. Geo-MarLett 23:140–146Google Scholar
  111. 111.
    Mulabagal V, Yin F, John GF, Hayworth JS, Clement TP (2013) Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline. Mar Pollut Bull 70:147–154PubMedCrossRefGoogle Scholar
  112. 112.
    Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM (2012) Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ Sci Technol 46:8799–8807PubMedCrossRefGoogle Scholar
  113. 113.
    Castanedo S, Medina R, Losada IJ, Vidal C, Méndez FJ, Osorio A, Juanes JA, Puente A (2006) The Prestige oil spill in Cantabria (Bay of Biscay). Part I: operational forecasting system for quick response, risk assessment, and protection of natural resources. J Coastal Res 22:1474–1489CrossRefGoogle Scholar
  114. 114.
    Guénette CC, Sergy GA, Owens EH, Prince RC, Lee K (2003) Experimental design of the Svalbard shoreline field trials. Spill Sci Technol Bull 8:245–256CrossRefGoogle Scholar
  115. 115.
    Owens EH, Lee K (2003) Interaction of oil and mineral fines on shorelines: review and assessment. Mar Pollut Bull 47:397–405PubMedCrossRefGoogle Scholar
  116. 116.
    Busenberg E, Plummer LN (2010) A rapid method for the measurement of sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), and Halon 1211 (CF2ClBr) in hydrologic tracer studies. Geochem Geophys Geosyst 11:11CrossRefGoogle Scholar
  117. 117.
    Sanford WE, Aeschbach-Hertig W, Herczeg AL (2011) Preface: insights from environmental tracers in groundwater systems. Hydrogeol J 19:1–3CrossRefGoogle Scholar
  118. 118.
    Heffner RA, Butler MJ, Reilly K (1996) Pseudoreplication revisited. Ecology 77:2558–2562CrossRefGoogle Scholar
  119. 119.
    Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211CrossRefGoogle Scholar
  120. 120.
    Hurlbert SH (2004) On misinterpretations of pseudoreplication and related matters: a reply to Oksanen. Oikos 104:591–597CrossRefGoogle Scholar
  121. 121.
    Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51:341–352CrossRefGoogle Scholar
  122. 122.
    Owens EH, Sergy GA, Guénette CC, Prince RC, Lee K (2003) The reduction of stranded oil by in situ shoreline treatment options. Spill Sci Technol B 8:257–272CrossRefGoogle Scholar
  123. 123.
    Salanitro JP, Johnson PC, Spinnler GE, Maner PM, Wisniewski HL, Bruce C (2000) Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ Sci Technol 34:4152–4162CrossRefGoogle Scholar
  124. 124.
    Council NR (1996) In situ bioremediation: when does it work? National Academies Press, WashingtonGoogle Scholar
  125. 125.
    Prince RC, Elmendorf DL, Lute JR, Hsu CS, Haith CE, Senius JD, Dechert GJ, Douglas GS, Butler EL (1994) 17α(H),21β(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28:142–145PubMedCrossRefGoogle Scholar
  126. 126.
    USACE (2003) Safety and health aspects of HTRW remediation technologies.–1–4007/toc.htm
  127. 127.
    Lee K, Wohlgeschaffen G, Tremblay GH, Johnson BT, Sergy GA, Prince RC, Guénette CC, Owens EH (2003) Toxicity evaluation with the Microtox test to assess the impact of in situ oiled shoreline treatment options: natural attenuation and sediment relocation. Spill Sci Technol Bull 8:273–284CrossRefGoogle Scholar
  128. 128.
    Prince RC, Clark JR, Lindstrom JE, Butler EL, Brown EJ, Winter G, Grossman MJ, Parrish RR, Bare RE, Braddock JF, Steinhauer WG, Douglas GS, Kennedy JM, Barter PJ, Bragg JR, Harner EJ, Atlas RM (1994) Bioremediation of the Exxon Valdez oil spill: monitoring safety and efficacy. In: Hinchee RE, Alleman BC, Hoeppel RE, Miller RN (eds) Hydrocarbon remediation. Lewis, Boca Raton, pp 107–124Google Scholar
  129. 129.
    Swannell RPJ, Croft BC, Grant AL, Lee K (1995) Evaluation of bioremediation agents in beach microcosms. Spill Sci Technol Bull 2:151–159CrossRefGoogle Scholar
  130. 130.
    Showers WJ, Genna B, McDade T, Bolich R, Fountain JC (2008) Nitrate contamination in groundwater on an urbanized dairy farm. Environ Sci Technol 42:4683–4688PubMedCrossRefGoogle Scholar
  131. 131.
    Tomlinson JJ, Elliott-Smith W, Radosta T (2006) Laboratory information management system chain of custody: reliability and security. J Autom Methods Manage Chem 74907:1–4CrossRefGoogle Scholar
  132. 132.
    USEPA (2013) Test method collections.
  133. 133.
    Environment Canada (2013) Environment Canada’s publications catalogue.
  134. 134.
    OECD (2013) OECD guidelines for the testing of chemicals.
  135. 135.
    Prince RC (2010) Field studies–demonstrating the efficacy of bioremediation. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3395–3405CrossRefGoogle Scholar
  136. 136.
    El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.ExxonMobil Biomedical Sciences, Inc.AnnandaleUSA

Personalised recommendations