Skip to main content

Primers: Functional Genes for Nitrogen-Cycling Microbes in Oil Reservoirs

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Microbial communities found in the subsurface are important in the biogeochemical cycling of nitrogen (N) both in the oxidative and reductive processes, and changes in their functional structure might affect the stability of a petroleum reservoir. In petroleum reservoirs, where in situ conditions are predominantly anoxic, denitrification involving the stepwise reduction of nitrate (NO3 ) via nitrite (NO2 ) and nitric oxide (NO) to nitrous oxide (N2O) or dinitrogen gas (N2) is a major process. Microorganisms may also decompose organic N to ammonium (NH4 +) by ammonification, which can subsequently be oxidised to NO3 via NO2 by the process of nitrification. Autotrophic ammonia oxidation is known in three groups of microorganisms: aerobic autotrophic ammonia-oxidising bacteria (AOB) and Archaea (AOA) and anaerobic ammonia-oxidising bacteria (anammox). Since the microorganisms involved in many of these N transformations are taxonomically diverse, 16S rRNA-based methods are generally not suitable. Instead, a common approach has been to target the protein-encoding genes involved in the transformation of N as biomarkers. This chapter describes the common PCR primers that have been used to target the major functional genes involved in the cycling of N, with the key N transformations likely to occur in petroleum reservoirs highlighted throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu Z et al. (2012) Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J 6:451–460

    Google Scholar 

  2. Ettwig KF et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Google Scholar 

  3. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Rev 61:533–616

    CAS  Google Scholar 

  4. Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196

    Article  CAS  PubMed  Google Scholar 

  5. Tiedje JM (1988) In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 179–244

    Google Scholar 

  6. Philippot L, Hojberg O (1999) Dissimilatory nitrate reductases in bacteria. Biochem Biophys Acta 1446:1–23

    CAS  PubMed  Google Scholar 

  7. Moreno-Vivián C, Cabello P, Martinez-luque M, Blasco R, Castillo F (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584

    PubMed  PubMed Central  Google Scholar 

  8. Philippot L, Piutti S, Martin-Laurent F, Hallet S, Germon JC (2002) Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Appl Environ Microbiol 68:6121–6128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Philippot L (2005) Tracking nitrate reducers and denitrifiers in the environments. Biochem Soc Trans 33:200–204

    Article  CAS  PubMed  Google Scholar 

  10. Flanagan DA, Gregory LG, Carter JP, Karakas-Sen A, Richardson DJ, Spiro S (1999) Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA. FEMS Microbiol Lett 177:263–270

    Article  CAS  PubMed  Google Scholar 

  11. Smith CJ, Nedwell DB, Dong LF, Osborn AM (2007) Diversity and abundance of nitrate reductase genes (narG and napA) nitrite reductase genes (nirS and nirK), and their transcripts in estuarine sediments. Appl Environ Microbiol 73:3612–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bru D, Sarr A, Philippot L (2007) Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl Environ Microbiol 73:5971–5974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klatte T, Evans L, Whitehead RN, Cole JA (2011) Enzymology and ecology of the nitrogen cycle: four PCR primers necessary for the detection of periplasmic nitrate reductase genes in all groups of Proteobacteria and in environmental DNA. Biochem Soc Trans 39:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng WW, Liu J-F, Gu J-D, Mu B-Z (2011) Nitrate-reducing community in production water of three oil reservoirs and their responses to different carbon sources revealed by nitrate-reductase encoding gene (napA). Int Biodeterior Biodegradation 65:1081–1086

    Article  CAS  Google Scholar 

  15. Alcantara-Hernandez RJ (2009) Respiratory and dissimilatory nitrate-reducing communities from an extreme saline alkaline soil of the former lake Texcoco. Extremophiles 13:169–178

    Article  CAS  PubMed  Google Scholar 

  16. Gregory LG, Bond PL, Richardson DJ, Spiro S (2003) Characterization of a nitrate-respiring bacterial community using nitrate reductase gene (narG) as a functional marker. Microbiology 149:229–237

    Article  CAS  PubMed  Google Scholar 

  17. López-Gutiérrez JC, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L (2004) Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J Microbiol Methods 57:399–407

    Article  PubMed  Google Scholar 

  18. Reyna L, Wunderlin DA, Genti-Raimondi S (2010) Identification and quantification of a novel nitrate-reducing community in sediments of Suquia River basin along a nitrate gradient. Environ Pollut 158:1608–1614

    Article  CAS  PubMed  Google Scholar 

  19. Rusch A (2013) Molecular tools for the detection of nitrogen cycling Archaea Archaea. doi:10.1155/2013/676450

  20. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  21. McKew BA, Smith CJ (2015) Real-time PCR approaches for analysis of hydrocarbon-degrading bacterial communities. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer protocols handbooks. Springer, Berlin. doi:10.1007/8623_2015_64

  22. Carter JP, Hsiao H, Spiro Y, Richardson DJ (1995) Soil and sediment bacteria capable of aerobic nitrate respiration. Appl Environ Microbiol 61:2852–2858

    CAS  PubMed  Google Scholar 

  23. Braker G, Fesefeldt A, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Penton CR, Johnson TA, Quensen III JF, Iwai S, Cole JR, Tiedje JM (2013) Functional genes to assess nitrogen cycling and aromatic hydrocarbon degradation: primers and processing matter. Front Microbiol 4:(279)1–16

    Google Scholar 

  25. Ward BB (1995) Diversity of culturable denitrifying bacteria. Arch Microbiol 69:3476–3483

    Google Scholar 

  26. Casciotti KL, Ward BB (2001) Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria. Appl Environ Microbiol 67:2213–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hallin S, Lindgren PE (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65:1652–1657

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Michotey V, Méjean V, Bonin P (2000) Comparison of methods for quantification of cytochrome cd1-denitrifying bacteria in environmental marine samples. Appl Environ Microbiol 66:1564–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan T, Fields MW, Wu L, Zu Y, Tiedje JM, Zhou J (2003) Molecular diversity and characterization of nitrite reductase gene fragments (nirK and nirS) from nitrate- and uranium-contaminated groundwater. Environ Microbiol 5:13–24

    Article  CAS  PubMed  Google Scholar 

  31. Throbäck IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Article  PubMed  Google Scholar 

  32. de Boer APN, Reijnders WNM, Kuenen JG, Stouthamer AH, Van Spanning RJM (1994) Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans. Antonie Leeuwenhoek 66:111–127

    Article  PubMed  Google Scholar 

  33. Jones CM, Stres B, Rosenquist M, Hallin S (2008) Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol 25:1955–1966

    Google Scholar 

  34. Bartossek R, Nicol G, Lanzen A, Klenk HP, Schleper C (2010) Homologues of nitrite reductases in ammonia oxidizing archaea: diversity and genomic context. Environ Microbiol 12:1075–1088

    Article  CAS  PubMed  Google Scholar 

  35. Green SJ, Prakash O, Gihring TM, Akob DM, Jasrotia P, Palumbo AV (2010) Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination. Appl Environ Microbiol 76:3244–3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Treusch AH, Leninger S, Kletzin A, Schuster SC, klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Google Scholar 

  37. Junier P, Molina V, Dorador C, Hadas O, Kim O-S, Junier T, Witzel K-P, Imhoff JF (2010) Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl Microbiol Biotechnol 85:425–440

    Article  CAS  PubMed  Google Scholar 

  38. Bock E, Schmidt I, Stuven R, Zart D (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbiol 163:16–20

    Article  CAS  Google Scholar 

  39. Hooper AB (1968) A nitrite-reducing enzyme from Nitrosomonas europaea: preliminary characterization with hydroxylamine as electron donor. Biochim Biophys Acta 162:49–65

    Article  CAS  PubMed  Google Scholar 

  40. Chen Z, Luo X, Hu R, Wu M, Wu J, Wei W (2010) Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb Ecol 60:850–861

    Article  CAS  PubMed  Google Scholar 

  41. Wei W, Isobe K, Nishizawa T, Zhu L, Shiratori Y, Ohte N, Koba K, Otsuka S, Senoo K (2015) Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME J 1–12

    Google Scholar 

  42. Kandeler E, Deiglmayr K, Tscherko D, Philippot L (2006) Abundance of narG, nirS, nirK and nosZ genes in denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol 72:5957–5962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lam P et al (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA 106:4752–4757

    Google Scholar 

  44. Huang S, Chen C, Yang X, Wu Q, Zhang R (2011) Distribution of typical denitrifying functional genes and diversity of nirS-encoding bacterial community related to environmental characteristics of river sediments. Biogeosciences 8:3041–3051

    Google Scholar 

  45. Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59:327–335

    Article  CAS  PubMed  Google Scholar 

  46. Barta J, Melichova T, Vanek D, Picek T, Santruckova H (2010) Effect of pH and dissolved organic matter on the abundance of nirK and nirS denitrifiers in spruce forest soil. Biogeochem 101:123–132

    Article  CAS  Google Scholar 

  47. Casciotti KL, Ward BB (2005) Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiol Ecol 52:197–205

    Article  CAS  PubMed  Google Scholar 

  48. Braker G, Tiedje JM (2003) Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Appl Environ Microbiol 69:3476–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chèneby D, Hartmann A, Henault C, Topp E, Germon JC (1998) Diversity of denitrifying microflora and ability to reduce N2O in two soils. Biol Fert Soils 28:19–26

    Article  Google Scholar 

  50. Scala DJ, Kerkhof LJ (1998) Nitrous oxide reductase 9nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol Letts 162:61–68

    Article  CAS  Google Scholar 

  51. Kloos K, Mergel A, Rosch C, Bothe H (2001) Denitrification within the genus Azospirillum and other associative bacteria. Aust J Plant Physiol 28:991–998

    Google Scholar 

  52. Nogales B, Timmis K, Nedwell D, Osborn M (2002) Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Appl Environ Microbiol 68:5017–5025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rich JJ, Heichen RS, Bottomley PJ, Cromack K, Myrold DD (2003) Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl Environ Microbiol 69:5974–5982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zehr JP, Reynolds LA (1989) Use of degenerate oligonucleotides for amplification of nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zani S, Mellon MT, Collier JL, Zehr JP (2000) Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Appl Environ Microbiol 66:3119–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Steward GF, Jenkins BD, Ward BB, Zehr JP (2004) Development and testing of a DNA microarray to assess nitrogenase (nifH) gene diversity. Appl Environ Microbiol 70:1455–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mohan SB, Schmid M, Jetten M, Cole J (2004) Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuit in the biological nitrogen cycle that competes with denitrification. FEMS Microbiol Ecol 49:433–443

    Article  CAS  PubMed  Google Scholar 

  59. Song B, Lisa JA, Tobias CR (2014) Linking DNRA community structure and activity in a shallow lagoonal estuarine system. Front Microbiol 5(460):1–10

    Google Scholar 

  60. Welsh A, Chee-Sanford J, Connor L, Löffler F, Sanford R (2014) Refined NrfA phylogeny improves PCR-based nrfA gene detection. Appl Environ Microbiol 80:03443–13–2119

    Google Scholar 

  61. Liu X, Gao C, Zhang A, Jin P, Wang L, Feng L (2008) The nos gene cluster from gram-positive bacterium Geobacillus thermodenitrificans NG80-2 and functional characterization of the recombinant NosZ. FEMS Microbiol Lett 289:46–52

    Google Scholar 

  62. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

  63. Gaby JC, Buckley DH (2014) A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. http://database.oxfordjournals.org/content/2014/bau001.full

  64. Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of Nitrogenase. PLOS One. doi:10.1371/journal.pone.0042149

    PubMed  PubMed Central  Google Scholar 

  65. Purkhold U, Wagner M, Timmermann G, Pommerening-Röser A, Koops H-P (2003) 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidising isolates: extension of the dataset and proposal of a new lineage within nitrosomonads. Int J Syst Evol Microbiol 53:1485–1494

    Article  CAS  PubMed  Google Scholar 

  66. Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Ecol Industrial Microbiol 14:300–306

    CAS  Google Scholar 

  67. Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  68. Norton JM, Alzerreca JJ, Suwa Y, Klotz MG (2002) Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol 177:139–149

    Article  CAS  PubMed  Google Scholar 

  69. Rotthauwe J-H, Witzel KP, Liesack W (1997) The ammonia-monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidising populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionary related. FEMS Microbiol Lett 132:203–208

    Article  CAS  PubMed  Google Scholar 

  71. Junier P, Kim O-S, Molina V, Limburg P, Junier T, Imhoff JF, Witzel K-P (2008) Comparative in silico analysis of PCR primers suited for diagnostics and cloning of ammonia monooxygenase genes from ammonia-oxidizing bacteria. FEMS Microbiol. Ecology 64:141–152

    Google Scholar 

  72. Sinigalliano CD, Kuhn DN, Jones RD (1995) Amplification of the amoA gene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Appl Environ Microbiol 61:2702–2706

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops H-P, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Stephen JR, Chang YJ, Macnaughton SJ, Kowalchuk GA, Leung KT, Flemming CA, White DC (1999) Effect of toxic metals on indigenous soil beta-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl Environ Microbiol 65:95–101

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nold SC, Zhou J, Devol AH, Tiedje JM (2000) Pacific Northwest marine sediments contain ammonia-oxidizing bacteria in the beta subdivision of the Proteobacteria. Appl Environ Microbiol 66:4532–4535

    Google Scholar 

  76. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognised species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hoshino T, Noda N, Tsuneda S, Hirata A, Inamori Y (2001) Direct detection by in situ PCR of the amoA gene in biofilm resulting from a nitrogen removal process. Appl Environ Microbiol 67:5261–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nicolaisen MH, Ramsing NB (2002) Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 50:189–203

    Article  CAS  PubMed  Google Scholar 

  79. Webster G, Embley TM, Prosser JI (2002) Grassland management regimens reduce small-scale heterogeneity and species diversity of Betaproteobacterial ammonia oxidizer populations. Appl Environ Microbiol 68:20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Okano Y et al (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016

    Google Scholar 

  81. Hornek R et al (2006) Primers containing universal bases reduce multiple amoA gene specific DGGE band patterns when analysing the diversity of beta-ammonia oxidizers in the environment. J Microbiol Methods 66:147–155

    Google Scholar 

  82. Molina V, Ulloa O, Farias L, Urrutia H, Ramirez S, Junier P, Witzel K-P (2007) Ammonia-oxidizing Betaproteobacteria from the oxygen minimum zone off northern Chile. Appl Environ Microbiol 73:3547–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Nat Acad Sci USA 102:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hallam SJ et al. 2006. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103:18296–18301

    Google Scholar 

  85. Wuchter C et al (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  87. Coolen MJL, Abbas B, van bleijswijk J, Hopmans EC, Kuypers MMM, Wakeham SG, et al (2007) Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environ Microbiol 9:1001–1016

    Google Scholar 

  88. Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364

    Article  CAS  PubMed  Google Scholar 

  89. Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441

    Article  CAS  PubMed  Google Scholar 

  90. Park S-J, Park B-J, Rhee S-K (2008) Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 72:6829–6832

    Google Scholar 

  91. Urakawa H, Tajima Y, numata Y, Tsuneda S (2008) Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems. Appl Environ Microbiol 74:894–900

    Google Scholar 

  92. Pester M, Maixner F, Berry D, Rattei T, Koch H, Lucker S, Nowka B, Richter A, Spieck E, Lebedeva E, Loy A, Wagner M, Daims H (2014) NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira Environ Microbiol 16:3055–3071

    Google Scholar 

  93. Schmid MC, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten MSM et al (2000) Molecular evidence for genus level diversity of bacteria capable of catalysing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106

    Article  CAS  PubMed  Google Scholar 

  94. Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, Lee ST, Park YH (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10:3130–3139

    Article  CAS  PubMed  Google Scholar 

  95. Li H, Chen S, Mu BZ, Gu JD (2010) Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high temperature petroleum reservoirs. Microbiol Ecol 60:771–783

    Google Scholar 

  96. Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Valerie B et al (2010) A Nitrospira metagenome illuminatintes the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA 107:13479–13484

    Google Scholar 

  97. Bergman DJ, Hooper AB, Klotz MG (2005) Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their evolutionary history. Appl Environ Microbiol 71:5371–5382

    Article  Google Scholar 

  98. Norton JM et al. (2008) Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol 74:3559–3572

    Google Scholar 

  99. Klotz MG, Stein LY (2008) Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol Lett 278:146–156

    Article  CAS  PubMed  Google Scholar 

  100. Moran MA et al (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–913

    Article  CAS  PubMed  Google Scholar 

  101. Poly F, Wertz S, Brothier E, Degrange V (2008) First exploration of Nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA. FEMS Microbiol Ecol 63:132–140

    Article  CAS  PubMed  Google Scholar 

  102. Vanparys B, Spieck E, Heylen K, Wittebolle L, Geets J, Boon N, De Vos P (2007) The phylogeny of the genus Nitrobacter based on comparative rep-PCR, 16S rRNA and nitrite oxidoreductase gene sequence analysis. Syst Appl Microbiol 30:297–308

    Article  CAS  PubMed  Google Scholar 

  103. Shimamura M, Nishiyama T, Shigetomo H, Toyomoto T, Kawahara Y, Furukawa K, Fujii T (2007) Isolation of a multigene protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture. Appl Environ Microbiol 73:1065–1072

    Article  CAS  PubMed  Google Scholar 

  104. Sonthiphand P, Hall MW, Neufeld JD (2014) Biogeography of anaerobic ammonia-oxidizing (anammox). Front Microbiol. doi:10.3389/fmicb.2014.00399

    PubMed  PubMed Central  Google Scholar 

  105. Strous M et al. (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    Google Scholar 

  106. Kuypers MMM et al. (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611

    Google Scholar 

  107. Kartal B, Kuypers MM, lavik G, Schalk J, Op den Camp HJ, jetten MS, Strous M (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9:635–642

    Google Scholar 

  108. Schmidt I, Bock E (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 167:106–111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Whitby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Smith, C.J., McKew, B.A., Coggan, A., Whitby, C. (2015). Primers: Functional Genes for Nitrogen-Cycling Microbes in Oil Reservoirs. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_184

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_184

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50427-7

  • Online ISBN: 978-3-662-50428-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics