Comprehensive Analysis of Microbial Lipids in Environmental Samples Through HPLC-MS Protocols

  • Lars WörmerEmail author
  • Julius S. Lipp
  • Kai-Uwe Hinrichs
Part of the Springer Protocols Handbooks book series (SPH)


Diversification and fine-tuning of membrane lipids has been a crucial step in allowing taxonomic diversification of microbial life, ecological expansion into new or changing habitats, and exploration of novel resources. This results in a strong association between lipid composition and taxonomy, environmental conditions, and some particular metabolic activities, an association that is the base of the lipid biomarker concept. Applied to environmental and geological samples, lipid biomarkers are able to provide a wealth of information: recalcitrant apolar lipids and relatively labile intact polar lipids can be informative on geological and biological timescales, respectively. We here provide an overview of the current state of lipid biomarker analysis by high-performance liquid chromatography mass spectrometry (HPLC-MS), with an emphasis on applications to complex environmental samples. Coupled to mass spectrometry through electrospray ionization, normal-phase or hydrophilic interaction liquid chromatography provides straightforward analysis of intact polar lipids (IPLs) according to their headgroups. Implementation of reversed-phase separation, on the other hand, offers to dramatically expand the analytical window of LC-MS amenable lipids and besides IPLs may, for example, target apolar glycerolipids, quinones, pigments, and bacteriohopanepolyols. An outlook to the potential of ultrahigh-resolution mass spectrometry to revolutionize several aspects of lipid biomarker analysis in the near future is also provided.


GDGT HPLC Intact polar lipid IPL Lipid biomarker Lipid fingerprinting Liquid chromatography Mass spectrometry 



Atmospheric pressure chemical ionization


Accelerated solvent extraction






Electrospray ionization




Hydrophilic interaction liquid chromatography


High-performance liquid chromatography




Intact polar lipid


Internal standard


Liquid chromatography


Long-chain diol index






Multiple reaction monitoring


Mass spectrometry


Tandem mass spectrometry


Normal phase


Reversed phase


Sea surface temperature


Trichloroacetic acid


Tetraether index of lipids with 86 carbons


Thin-layer chromatography


Ultrahigh-performance liquid chromatography


Alkenone unsaturation index




% Weight


  1. 1.
    Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annual Rev Biochem 66:199–232CrossRefGoogle Scholar
  2. 2.
    Koga Y, Nishihara M, Morii H et al (1993) Ether polar lipids of methanogenic bacteria – structures, comparative aspects, and biosyntheses. Microbiol Rev 57:164–182PubMedPubMedCentralGoogle Scholar
  3. 3.
    Rossel PE, Lipp JS, Fredricks HF et al (2008) Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Org Geochem 39:992–999CrossRefGoogle Scholar
  4. 4.
    Van Mooy BAS, Fredricks HF (2010) Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: water-column distribution, planktonic sources, and fatty acid composition. Geochim Cosmochim Acta 74:6499–6516CrossRefGoogle Scholar
  5. 5.
    Harvey HR, Fallon RD, Patton JS (1986) The effect of organic-matter and oxygen on the degradation of bacterial-membrane lipids in marine-sediments. Geochim Cosmochim Acta 50:795–804CrossRefGoogle Scholar
  6. 6.
    Xie ST, Lipp JS, Wegener G et al (2013) Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations. Proc Natl Acad Sci USA 110:6010–6014PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Siegenthaler P-A, Murata N (1998) Lipids in photosynthesis. Kluwer Academic Publishers, DordrechtGoogle Scholar
  8. 8.
    Makula RA, Finnerty WR (1974) Phospholipid composition of Desulfovibrio species. J Bacteriol 120:1279–1283PubMedPubMedCentralGoogle Scholar
  9. 9.
    Rütters H, Sass H, Cypionka H et al (2001) Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch Microbiol 176:435–442PubMedCrossRefGoogle Scholar
  10. 10.
    Shimada H, Nemoto N, Shida Y et al (2008) Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol 190:5404–5411PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yoshinaga MY, Gagen EJ, Wormer L et al (2015) Methanothermobacter thermautotrophicus modulates s membrane lipids in response to hydrogen and nutrient availability. Front Microbiol 6:5PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Popendorf KJ, Tanaka T, Pujo-Pay M et al (2011) Gradients in intact polar diacylglycerolipids across the Mediterranean Sea are related to phosphate availability. Biogeosci 8:3733–3745CrossRefGoogle Scholar
  13. 13.
    Van Mooy BAS, Fredricks HF, Pedler BE et al (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72PubMedCrossRefGoogle Scholar
  14. 14.
    Langworthy TA, Pond JL (1986) Archaebacterial ether lipids and chemotaxonomy. Syst Appl Microbiol 7:253–257CrossRefGoogle Scholar
  15. 15.
    Sinninghe Damste JS, Strous M, Rijpstra WIC et al (2002) Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419:708–712PubMedCrossRefGoogle Scholar
  16. 16.
    Bauersachs T, Compaore J, Hopmans EC et al (2009) Distribution of heterocyst glycolipids in cyanobacteria. Phytochem 70:2034–2039CrossRefGoogle Scholar
  17. 17.
    Wörmer L, Cires S, Velazquez D et al (2012) Cyanobacterial heterocyst glycolipids in cultures and environmental samples: diversity and biomarker potential. Limnol Oceanogr 57:1775–1788CrossRefGoogle Scholar
  18. 18.
    Popendorf KJ, Lomas MW, Van Mooy BAS (2011) Microbial sources of intact polar diacylglycerolipids in the Western North Atlantic Ocean. Org Geochem 42:803–811CrossRefGoogle Scholar
  19. 19.
    Schubotz F, Wakeham SG, Lipp JS et al (2009) Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea. Environ Microbiol 11:2720–2734PubMedCrossRefGoogle Scholar
  20. 20.
    Pitcher A, Villanueva L, Hopmans EC et al (2011) Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J 5:1896–1904PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Moore EK, Villanueva L, Hopmans EC et al (2015) Abundant trimethylornithine lipids and specific gene sequences are indicative of Planctomycete importance at the oxic/anoxic interface in Sphagnum-dominated northern wetlands. Appl Environ Microbiol 81:6333–6344PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Schubotz F, Meyer-Dombard DR, Bradley AS et al (2013) Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park. Geobiol 11:549–569Google Scholar
  23. 23.
    Gibson RA, Van Der Meer MTJ, Hopmans EC et al (2013) Comparison of intact polar lipid with microbial community composition of vent deposits of the Rainbow and Lucky Strike hydrothermal fields. Geobiol 11:72–85CrossRefGoogle Scholar
  24. 24.
    Reeves EP, Yoshinaga MY, Pjevac P et al (2014) Microbial lipids reveal carbon assimilation patterns on hydrothermal sulfide chimneys. Environ Microbiol 16:3515–3532PubMedCrossRefGoogle Scholar
  25. 25.
    Rossel PE, Elvert M, Ramette A et al (2011) Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: Evidence from intact polar membrane lipids. Geochim Cosmochim Acta 75:164–184CrossRefGoogle Scholar
  26. 26.
    Schubotz F, Lipp JS, Elvert M et al (2011) Petroleum degradation and associated microbial signatures at the Chapopote asphalt volcano, Southern Gulf of Mexico. Geochim Cosmochim Acta 75:4377–4398CrossRefGoogle Scholar
  27. 27.
    Biddle JF, Lipp JS, Lever MA et al (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103:3846–3851PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lipp JS, Morono Y, Inagaki F et al (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994PubMedCrossRefGoogle Scholar
  29. 29.
    Hinrichs KU, Hmelo LR, Sylva SP (2003) Molecular fossil record of elevated methane levels in late pleistocene coastal waters. Science 299:1214–1217PubMedCrossRefGoogle Scholar
  30. 30.
    Kuypers MMM, Pancost RD, Sinninghe Damste JS (1999) A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature 399:342–345CrossRefGoogle Scholar
  31. 31.
    Sepulveda J, Wendler JE, Summons RE et al (2009) Rapid resurgence of marine productivity after the cretaceous-paleogene mass extinction. Science 326:129–132PubMedCrossRefGoogle Scholar
  32. 32.
    Brassell SC, Eglinton G, Marlowe IT et al (1986) Molecular Stratigraphy – a new tool for climatic assessment. Nature 320:129–133CrossRefGoogle Scholar
  33. 33.
    Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature 330:367–369CrossRefGoogle Scholar
  34. 34.
    Schouten S, Hopmans EC, Schefuss E et al (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274CrossRefGoogle Scholar
  35. 35.
    Reuss N, Conley DJ, Bianchi TS (2005) Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Mar Chem 95:283–302CrossRefGoogle Scholar
  36. 36.
    Tani Y, Kurihara K, Nara F et al (2002) Temporal changes in the phytoplankton community of the southern basin of Lake Baikal over the last 24,000 years recorded by photosynthetic pigments in a sediment core. Org Geochem 33:1621–1634CrossRefGoogle Scholar
  37. 37.
    Volkman JK (1986) A review of sterol markers for marine and terrigenous organic-matter. Org Geochem 9:83–99CrossRefGoogle Scholar
  38. 38.
    Blumenberg M, Berndmeyer C, Moros M et al (2013) Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea. Biogeosci 10:2725–2735CrossRefGoogle Scholar
  39. 39.
    Summons RE, Jahnke LL, Hope JM et al (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557PubMedCrossRefGoogle Scholar
  40. 40.
    White DC, Davis WM, Nickels JS et al (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62CrossRefGoogle Scholar
  41. 41.
    Kuypers MMM, Blokker P, Erbacher J et al (2001) Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science 293:92–94PubMedCrossRefGoogle Scholar
  42. 42.
    Liu X-L, Lipp JS, Schroeder JM et al (2012) Isoprenoid glycerol dialkanol diethers: a series of novel archaeal lipids in marine sediments. Org Geochem 43:50–55CrossRefGoogle Scholar
  43. 43.
    Schouten S, Hopmans EC, Forster A et al (2003) Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids. Geology 31:1069–1072CrossRefGoogle Scholar
  44. 44.
    Schouten S, Hopmans EC, Pancost RD et al (2000) Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc Natl Acad Sci USA 97:14421–14426PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Myher JJ, Kuksis A (1995) General strategies in chromatographic analysis of lipids. J Chromatogr B 671:3–33CrossRefGoogle Scholar
  46. 46.
    Hopmans EC, Schouten S, Pancost RD et al (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Sp 14:585–589CrossRefGoogle Scholar
  47. 47.
    Rütters H, Sass H, Cypionka H et al (2002) Phospholipid analysis as a tool to study complex microbial communities in marine sediments. J Microbiol Methods 48:149–160PubMedCrossRefGoogle Scholar
  48. 48.
    Sturt HF, Summons RE, Smith K et al (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry – new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Sp 18:617–628CrossRefGoogle Scholar
  49. 49.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  50. 50.
    Nishihara M, Koga Y (1987) extraction and composition of polar lipids from the archaebacterium, Methanobacterium-thermoautotrophicum – effective extraction of tetraether lipids by an acidified solvent. J Biochem Tokyo 101:997–1005PubMedGoogle Scholar
  51. 51.
    Huguet C, Martens-Habbena W, Urakawa H et al (2010) Comparison of extraction methods for quantitative analysis of core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in environmental samples. Limnol Oceanogr Methods 8:127–145CrossRefGoogle Scholar
  52. 52.
    Lengger SK, Hopmans EC, Sinninghe Damste JS et al (2012) Comparison of extraction and work up techniques for analysis of core and intact polar tetraether lipids from sedimentary environments. Org Geochem 47:34–40CrossRefGoogle Scholar
  53. 53.
    Zhu R, Evans TW, Wormer L et al (2013) Improved sensitivity of sedimentary phospholipid analysis resulting from a novel extract cleanup strategy. Org Geochem 65:46–52CrossRefGoogle Scholar
  54. 54.
    Lipp JS, Hinrichs KU (2009) Structural diversity and fate of intact polar lipids in marine sediments. Geochim Cosmochim Acta 73:6816–6833CrossRefGoogle Scholar
  55. 55.
    Liu X, Lipp JS, Hinrichs K-U (2011) Distribution of intact and core GDGTs in marine sediments. Org Geochem 42:368–375CrossRefGoogle Scholar
  56. 56.
    Pitcher A, Hopmans EC, Schouten S et al (2009) Separation of core and intact polar archaeal tetraether lipids using silica columns: Insights into living and fossil biomass contributions. Org Geochem 40:12–19CrossRefGoogle Scholar
  57. 57.
    Heinzelmann SM, Bale NJ, Hopmans EC et al (2014) Critical assessment of glyco- and phospholipid separation by using silica chromatography. Appl Environ Microbiol 80:360–365PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lin YS, Lipp JS, Elvert M et al (2013) Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing. Environ Microbiol 15:1634–1646PubMedCrossRefGoogle Scholar
  59. 59.
    Kim HY, Wang TCL, Ma YC (1994) Liquid-chromatography mass-spectrometry of phospholipids using electrospray-ionization. Anal Chem 66:3977–3982PubMedCrossRefGoogle Scholar
  60. 60.
    Schouten S, Huguet C, Hopmans EC et al (2007) Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem 79:2940–2944PubMedCrossRefGoogle Scholar
  61. 61.
    Diaz-Cruz MS, De Alda MJL, Barcelo D (2003) Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trac-Trend Anal Chem 22:340–351CrossRefGoogle Scholar
  62. 62.
    Theodoridis G, Gika HG, Wilson ID (2008) LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. Trac-Trend Anal Chem 27:251–260CrossRefGoogle Scholar
  63. 63.
    Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic-acids and other polar compounds. J Chromatogr 499:177–196PubMedCrossRefGoogle Scholar
  64. 64.
    Fischbeck A, Krueger M, Blaas N et al (2009) Analysis of sphingomyelin in meat based on hydrophilic interaction liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (HILIC-HPLC-ESI-MS/MS). J Agr Food Chem 57:9469–9474CrossRefGoogle Scholar
  65. 65.
    Schwalbe-Herrmann M, Willmann J, Leibfritz D (2010) Separation of phospholipid classes by hydrophilic interaction chromatography detected by electrospray ionization mass spectrometry. J Chromatogr A 1217:5179–5183PubMedCrossRefGoogle Scholar
  66. 66.
    Wörmer L, Lipp JS, Schroeder JM et al (2013) Application of two new LC-ESI-MS methods for improved detection of intact polar lipids (IPLs) in environmental samples. Org Geochem 59:10–21CrossRefGoogle Scholar
  67. 67.
    Becker KW, Lipp JS, Zhu C et al (2013) An improved method for the analysis of archaeal and bacterial ether core lipids. Org Geochem 61:34–44CrossRefGoogle Scholar
  68. 68.
    Becker KW, Lipp JS, Versteegh GJM et al (2015) Rapid and simultaneous analysis of three molecular sea surface temperature proxies and application to sediments from the Sea of Marmara. Org Geochem 85:42–53CrossRefGoogle Scholar
  69. 69.
    Bühring SI, Kamp A, Wormer L et al (2014) Functional structure of laminated microbial sediments from a supratidal sandy beach of the German Wadden Sea (St. Peter-Ording). J Sea Res 85:463–473CrossRefGoogle Scholar
  70. 70.
    Schubotz F, Hays LE, Meyer-Dombard DR et al (2015) Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs. Front Microbiol 6:42PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kaufmann P, Olsson NU (1993) Determination of intact molecular-species of bovine-milk 1, 2-diacyl-sn-glycero-3-phosphocholine and 1, 2-diacyl-sn-glycero-3-phosphoethanolamine by reversed-phase hplc, a multivariate optimization. Chromatographia 35:517–523CrossRefGoogle Scholar
  72. 72.
    Zhu C, Lipp JS, Wormer L et al (2013) Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography-mass spectrometry protocol. Org Geochem 65:53–62CrossRefGoogle Scholar
  73. 73.
    Talbot HM, Rohmer M, Farrimond P (2007) Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Sp 21:880–892CrossRefGoogle Scholar
  74. 74.
    Talbot HM, Watson DF, Murrell JC et al (2001) Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 921:175–185PubMedCrossRefGoogle Scholar
  75. 75.
    Neubauer C, Dalleska NF, Cowley ES et al (2015) Lipid remodeling in Rhodopseudomonas palustris TIE-1 upon loss of hopanoids and hopanoid methylation. Geobiol 13:443–453CrossRefGoogle Scholar
  76. 76.
    Lanekoff I, Karlsson R (2010) Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-ESI-MS. Anal Bioanal Chem 397:3543–3551PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zhang JI, Talaty N, Costa AB et al (2011) Rapid direct lipid profiling of bacteria using desorption electrospray ionization mass spectrometry. Int J Mass Spec 301:37–44CrossRefGoogle Scholar
  78. 78.
    Zhang YG, Zhang CL, Liu X-L et al (2011) Methane Index: a tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet Sci Lett 307:525–534CrossRefGoogle Scholar
  79. 79.
    Elling FJ, Konneke M, Lipp JS et al (2014) Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment. Geochim Cosmochim Acta 141:579–597CrossRefGoogle Scholar
  80. 80.
    Zhu C, Yoshinaga MY, Peters CA et al (2014) Identification and significance of unsaturated archaeal tetraether lipids in marine sediments. Rapid Commun Mass Sp 28:1144–1152CrossRefGoogle Scholar
  81. 81.
    Zhu C, Meador TB, Dummann W et al (2014) Identification of unusual butanetriol dialkyl glycerol tetraether and pentanetriol dialkyl glycerol tetraether lipids in marine sediments. Rapid Commun Mass Sp 28:332–338CrossRefGoogle Scholar
  82. 82.
    Meador TB, Bowles M, Lazar CS et al (2015) The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group. Environ Microbiol 17:2441–2458PubMedCrossRefGoogle Scholar
  83. 83.
    Souverain S, Rudaz S, Veuthey JL (2004) Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures. J Chromatogr A 1058:61–66PubMedCrossRefGoogle Scholar
  84. 84.
    Escala M, Rosell-Mele A, Masque P (2007) Rapid screening of glycerol dialkyl glycerol tetraethers in continental Eurasia samples using HPLC/APCI-ion trap mass spectrometry. Org Geochem 38:161–164CrossRefGoogle Scholar
  85. 85.
    Yang H, Lu XX, Ding WH et al (2015) The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT ') in soils from an altitudinal transect at Mount Shennongjia. Org Geochem 82:42–53CrossRefGoogle Scholar
  86. 86.
    Liu XL, Summons RE, Hinrichs KU (2012) Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns. Rapid Commun Mass Sp 26:2295–2302CrossRefGoogle Scholar
  87. 87.
    De Jonge C, Hopmans EC, Stadnitskaia A et al (2013) Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC-SMB-MS. Org Geochem 54:78–82CrossRefGoogle Scholar
  88. 88.
    Huguet C, Fietz S, Rosell-Mele A (2013) Global distribution patterns of hydroxy glycerol dialkyl glycerol tetraethers. Org Geochem 57:107–118CrossRefGoogle Scholar
  89. 89.
    Liu XL, Zhu C, Wakeham SG et al (2014) In situ production of branched glycerol dialkyl glycerol tetraethers in anoxic marine water columns. Mar Chem 166:1–8CrossRefGoogle Scholar
  90. 90.
    Rampen SW, Willmott V, Kim JH et al (2012) Long chain 1,13-and 1,15-diols as a potential proxy for palaeotemperature reconstruction. Geochim Cosmochim Acta 84:204–216CrossRefGoogle Scholar
  91. 91.
    Brugger B, Erben G, Sandhoff R et al (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 94:2339–2344PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Fang JS, Barcelona MJ (1998) Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography electrospray ionization mass spectrometry. J Microbiol Methods 33:23–35CrossRefGoogle Scholar
  93. 93.
    Knappy CS, Chong JPJ, Keely BJ (2009) Rapid discrimination of archaeal tetraether lipid cores by liquid chromatography-tandem mass spectrometry. J Am Soc Mass Spectr 20:51–59CrossRefGoogle Scholar
  94. 94.
    Yoshinaga MY, Kellermann MY, Rossel PE et al (2011) Systematic fragmentation patterns of archaeal intact polar lipids by high-performance liquid chromatography/electrospray ionization ion-trap mass spectrometry. Rapid Commun Mass Sp 25:3563–3574CrossRefGoogle Scholar
  95. 95.
    Popendorf KJ, Fredricks HF, Van Mooy BAS (2013) Molecular ion-independent quantification of polar glycerolipid classes in marine plankton using triple quadrupole MS. Lipids 48:185–195PubMedCrossRefGoogle Scholar
  96. 96.
    Huguet C, Hopmans EC, Febo-Ayala W et al (2006) An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem 37:1036–1041CrossRefGoogle Scholar
  97. 97.
    Zink KG, Wilkes H, Disko U et al (2003) Intact phospholipids – microbial “life markers” in marine deep subsurface sediments. Org Geochem 34:755–769CrossRefGoogle Scholar
  98. 98.
    Han XL, Gross RW (2005) Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteom 2:253–264CrossRefGoogle Scholar
  99. 99.
    Jensen SM, Brandl M, Treusch AH et al (2015) Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics. J Mass Spectrom 50:476–487PubMedCrossRefGoogle Scholar
  100. 100.
    Jones JJ, Stump MJ, Fleming RC et al (2004) Strategies and data analysis techniques for lipid and phospholipid chemistry elucidation by intact cell MALDI-FTMS. J Am Soc Mass Spectr 15:1665–1674CrossRefGoogle Scholar
  101. 101.
    Van Baar BLM (2000) Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry. FEMS Microbiol Rev 24:193–219PubMedCrossRefGoogle Scholar
  102. 102.
    Meetani MA, Shin YS, Zhang SF et al (2007) Desorption electrospray ionization mass spectrometry of intact bacteria. J Mass Spectrom 42:1186–1193PubMedCrossRefGoogle Scholar
  103. 103.
    Heim C, Sjovall P, Lausmaa J et al (2009) Spectral characterisation of eight glycerolipids and their detection in natural samples using time-of-flight secondary ion mass spectrometry. Rapid Commun Mass Sp 23:2741–2753CrossRefGoogle Scholar
  104. 104.
    Leefmann T, Heim C, Kryvenda A et al (2013) Biomarker imaging of single diatom cells in a microbial mat using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Org Geochem 57:23–33CrossRefGoogle Scholar
  105. 105.
    Thiel V, Toporski J, Schumann G et al (2007) Analysis of archaeal core ether lipids using time of flight-secondary ion mass spectrometry (ToF-SIMS): exploring a new prospect for the study of biomarkers in geobiology. Geobiol 5:75–83CrossRefGoogle Scholar
  106. 106.
    Wörmer L, Elvert M, Fuchser J et al (2014) Ultra-high-resolution paleoenvironmental records via direct laser-based analysis of lipid biomarkers in sediment core samples. Proc Natl Acad Sci USA 111:15669–15674PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hayes JM (2001) Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. Rev Mineral Geochem 43:225–277CrossRefGoogle Scholar
  108. 108.
    Boschker HTS, Nold SC, Wellsbury P et al (1998) Direct linking of microbial populations to specific biogeochemical processes by C-13-labelling of biomarkers. Nature 392:801–805CrossRefGoogle Scholar
  109. 109.
    Jehmlich N, Schmidt F, Hartwich M et al (2008) Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (Protein-SIP). Rapid Commun Mass Sp 22:2889–2897CrossRefGoogle Scholar
  110. 110.
    Justice NB, Li Z, Wang YF et al (2014) N-15- and H-2 proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity. Environ Microbiol 16:3224–3237PubMedCrossRefGoogle Scholar
  111. 111.
    Pan CL, Fischer CR, Hyatt D et al (2011) Quantitative tracking of isotope flows in proteomes of microbial communities. Mol Cell Proteom 10: M110-006049Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lars Wörmer
    • 1
    Email author
  • Julius S. Lipp
    • 1
  • Kai-Uwe Hinrichs
    • 1
  1. 1.Organic Geochemistry GroupMARUM Center for Marine Environmental Sciences, and Department of Geosciences, University of BremenBremenGermany

Personalised recommendations