Skip to main content

Oleaginous Microalgae Isolation and Screening for Lipid Productivity Using a Standard Protocol

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Microalgae have great potential to serve as a feedstock for biodiesel, based on their high areal productivity and their ability to accumulate large amounts of triacylglycerols. In contrary to first-generation biofuel crops, microalgae do not need to compete with arable land or biodiverse landscapes and can be grown in virtually any type of water, including fresh, brackish, saline and wastewater. The use of local microalgal strains is desirable, as they are often dominant under the local geographical, climatic and ecological conditions. Here we describe a user-friendly method that enables the isolation of monoalgal strains, coupled to a standard protocol to evaluate their potential for lipid accumulation by directly comparing lipid productivities. Other important criteria to consider include the ability to harvest microalgae and extract their oil cost-effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duong VT, Thomas-Hall SR, Schenk PM (2015) Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland – Australia. Front Plant Sci 6:359

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schenk PM, Thomas-Hall SR, Stephens E, Marx U, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1(1):20–43

    Article  Google Scholar 

  3. Duong VT, Li Y, Nowak E, Schenk PM (2012) Microalgae isolation and selection for prospective biodiesel production. Energies 5(6):1835–1849

    Article  CAS  Google Scholar 

  4. Ahmed F, Li Y, Schenk PM (2012) Algal biorefinery: sustainable production of biofuels and aquaculture feed. In: Gordon R, Seckbach J (eds) The science of algal fuels: phycology, geology, biophotonics, genomics and nanotechnology. Springer, Dordrecht

    Google Scholar 

  5. Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  6. Bischoff HW, Bold HC (1963) Some soil algae from Enchanted Rock and related algal species, phycological studies IV. University of Texas, Austin pp 1–95

    Google Scholar 

  7. Valenzuela-Espinoza E, Millan-Nunez R, Nunez-Cebrero F (1999) Biomass production and nutrient uptake by Isochrysis aff. galbana (Clone T-ISO) cultured with a low cost alternative to the f/2 medium. Aquacultl Eng 20:135–147

    Article  Google Scholar 

  8. Borowitzka MA (2013) Species and strain selection. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels energy, vol 5. pp 77–89

    Google Scholar 

  9. Borowitzka MA, Moheimani NR (2010) Sustainable biofuels from algae. Mitig Adapt Strat Global Change 1–13

    Google Scholar 

  10. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5(5):1532–1553

    Article  CAS  Google Scholar 

  11. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae. Close-Out report. National Renewable Energy Lab, Department of Energy, Golden, Colorado, U.S.A. Report number NREL/TP-580-24190, dated July 1998

    Google Scholar 

  12. Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 129:1320–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen H, Jiang J (2009) Osmotic responses of Dunaliella to the changes of salinity. J Cell Physiol 219:251–258

    Article  CAS  PubMed  Google Scholar 

  14. Borowitzka M, Huisman J, Osborn A (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J Appl Phycol 3:295–304

    Article  CAS  Google Scholar 

  15. Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 17:6475–6481

    Article  Google Scholar 

  16. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  17. Sharma KK, Garg S, Li Y, Malekizadeh A, Schenk PM (2013) Critical analysis of current microalgae dewatering techniques. Biofuels 4:397–407

    Article  CAS  Google Scholar 

  18. Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  19. Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001

    Article  CAS  Google Scholar 

  20. Sharma K, Li Y, Schenk PM (2014) UV-C-mediated lipid induction and settling, a step change towards economical microalgal biodiesel production. Green Chem 16:3539–3548

    Article  CAS  Google Scholar 

  21. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77(1):41–47

    Article  CAS  Google Scholar 

  22. Lim DKY, Schuhmann H, Sharma K, Schenk PM (2014) Isolation of high-lipid Tetraselmis suecica strains following repeated UV-C mutagenesis, FACS and high-throughput growth selection. Bioenerg Res 8(2):750–759

    Article  Google Scholar 

  23. Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Meth 68:639–642

    Article  CAS  Google Scholar 

  24. María FM, Manuela A, Guillermo GR (2011) Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting. J Appl Phycol 23:1053–1057

    Article  Google Scholar 

  25. Levasseur M, Thompson PA, Harrison PJ (1993) Physiological acclimation of marine phytoplankton to different nitrogen sources. J Phycol 29(5):587–595

    Article  CAS  Google Scholar 

  26. Bakoss P (1970) Cloning of leptospires by micromanipulator. Bull WHO 43:599–601

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sherman F (1973) Micromanipulator for yeast genetic studies. Appl Microbiol 26:829

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  PubMed  Google Scholar 

  29. Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Ghasemi Naghdi F, Garg S, Adarme-Vega TC, Thurecht K, Ghafor W, Tannock S, Schenk PM (2014) A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Factories 13(1):14

    Article  Google Scholar 

  31. Pereira H, Barreira L, Mozes A, Florindo C, Polo C, Duarte C, Custodio L, Varela J (2011) Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol Biofuels 4(1):61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sinigalliano CD, Winshell J, Guerrero MA, Scorzetti G, Fell JW, Eaton RW, Brand L, Rein KS (2009) Viable cell sorting of dinoflagellates by multiparametric flow cytometry. Phycologia 48(4):249–257

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rhee GY (1978) Effects of N:P Atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol Oceanograph 23(1):10–25

    Article  CAS  Google Scholar 

  34. Stelzer RS, Lamberti GA (2001) Effects of N:P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnol Oceanograph 46(2):356–367

    Article  Google Scholar 

  35. Adarme-Vega TC, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Factories 11(1):96

    Article  CAS  Google Scholar 

  36. Lim DKY, Garg S, Timmins M, Zhang ESB, Thomas-Hall SR, Schuhmann H, Li Y, Schenk PM (2012) Isolation and evaluation of oil producing microalgae from subtropical coastal and brackish waters. PLoS One 7(7):e40751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Doan TTY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenerg 35(7):2534–2544

    Article  CAS  Google Scholar 

  38. Renaud SM, Thinh L-V, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211(1–4):195–214

    Article  CAS  Google Scholar 

  39. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We wish to thank Meat and Livestock Australia and the Endeavour Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer M. Schenk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Duong, V.T., Bao, B., Schenk, P.M. (2015). Oleaginous Microalgae Isolation and Screening for Lipid Productivity Using a Standard Protocol. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_181

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_181

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45178-6

  • Online ISBN: 978-3-662-45179-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics