Advertisement

Protocol to Investigate Volatile Aromatic Hydrocarbon Degradation with Purge and Trap Coupled to a Gas Chromatograph/Isotope Ratio Mass Spectrometer

  • Armin H. Meyer
  • Michael P. Maier
  • Martin ElsnerEmail author
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Compound-specific isotope (CSIA) analysis is a well-established analytical tool in biogeochemistry, environmental science, and forensic research. Observable shifts in isotope ratios are used to distinguish different sources of the same chemical, to detect organic compound degradation, to estimate the extent of degradation, and to differentiate transformation pathways. To this end, CSIA determines the isotopic composition (e.g., 13C/12C) of single organic compounds within complex sample matrices as described here for benzene, toluene, ethylbenzene, xylene (BTEX), and naphthalene. Such CSIA relies on gas chromatography-isotope ratio mass spectrometry (GC-IRMS). Chromatographic separation is followed by online conversion of organic analytes to CO2 to facilitate the simultaneous analysis of 13CO2 and 12CO2 in dedicated Faraday cups of an isotope ratio mass spectrometer for precise isotope measurements. The following protocol provides the detailed description of CSIA of BTEX and naphthalene by GC-IRMS connected to a purge and trap autosampler device for the analysis of samples at trace concentrations (μg/L). Although this method is exemplified by Tekmar/Thermo Fisher Scientific devices, the principles of the approach hold for equipment from other manufacturers.

Keywords:

Aromatic hydrocarbons GC-IRMS Isotope fractionation Isotope ratio mass spectrometry Purge and trap 

Notes

Acknowledgments

This work was conducted in a Helmholtz Young Investigator Group supported by funding of the Helmholtz Initiative and Networking Fund, and the EU-funded project Kill Spill. We thank Aileen Melsbach for her fruitful comments in improving the protocol.

References

  1. 1.
    Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol 75:215–255CrossRefPubMedGoogle Scholar
  2. 2.
    Hofstetter TB, Berg M (2011) Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. Trends Analyt Chem 30:618–627CrossRefGoogle Scholar
  3. 3.
    Thullner M, Fischer A, Richnow HH, Wick LY (2013) Influence of mass transfer on stable isotope fractionation. Appl Microbiol Biotechnol 97:441–452CrossRefPubMedGoogle Scholar
  4. 4.
    Elsner M, Jochmann MA, Hofstetter TB et al (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491CrossRefPubMedGoogle Scholar
  5. 5.
    Hatzinger PB, Böhlke JK, Sturchio NC (2013) Application of stable isotope ratio analysis for biodegradation monitoring groundwater. Curr Opin Chem Biol 24:542–549Google Scholar
  6. 6.
    Meier-Augenstein W (1999) Applied gas chromatography coupled to isotope ratio mass spectrometry. J Chromatogr A 842:351–371CrossRefPubMedGoogle Scholar
  7. 7.
    Brand WA (1996) High precision isotope ratio monitoring techniques in mass spectrometry. J Mass Spectrom 31:225–235CrossRefPubMedGoogle Scholar
  8. 8.
    Benson S, Lennard C, Maynard P, Roux C (2006) Forensic applications of isotope ratio mass spectrometry – a review. Forensic Sci Int 157:1–22CrossRefPubMedGoogle Scholar
  9. 9.
    Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378:283–300CrossRefPubMedGoogle Scholar
  10. 10.
    Hunkeler D, Meckenstock RU, Sherwood Lollar B, et al (2008) A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA). Report no: PA 600/R-08/148. Oklahoma, USA: US EPA; 2008, Dec 2008. www.epa.gov/ada
  11. 11.
    Wolfsberg M, Van Hook WA, Paneth P (2010) Isotope effects in the chemical, geological and bio sciences. Springer, Dordrecht/Heidelberg/London/New YorkGoogle Scholar
  12. 12.
    Mariotti A, Germon JC, Hubert P et al (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62:413–430CrossRefGoogle Scholar
  13. 13.
    Hoefs J (1987) Theoretical and experimental principles. In: Wyllie PJ (ed) Stable isotope geochemistry, 3rd edn. Springer, Chicago, pp 1–25CrossRefGoogle Scholar
  14. 14.
    Qiu S, Eckert D, Cirpka OA et al (2013) Direct experimental evidence of non-first order degradation kinetics and sorption-induced isotopic fractionation in a mesoscale aquifer: 13C/12C analysis of a transient toluene pulse. Environ Sci Technol 47:6892–6899CrossRefPubMedGoogle Scholar
  15. 15.
    Harrington RR, Poulson SR, Drever JI, Colberg PJS, Kelly EF (1999) Carbon isotope systematics of monoaromatic hydrocarbons: vaporization and adsorption experiments. Org Geochem 30:765–775CrossRefGoogle Scholar
  16. 16.
    Slater GF, Dempster HS, Lollar BS, Ahad J (1999) Headspace analysis: a new application for isotopic characterization of dissolved organic contaminants. Environ Sci Technol 33:190–194CrossRefGoogle Scholar
  17. 17.
    Hirschorn SK, Dinglasan MJ, Elsner M et al (2004) Pathway dependent isotopic fractionation during aerobic biodegradation of 1,2-dichloroethane. Environ Sci Technol 38:4775–4781CrossRefPubMedGoogle Scholar
  18. 18.
    Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39:6896–6916CrossRefPubMedGoogle Scholar
  19. 19.
    Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit 12:2005–2031CrossRefPubMedGoogle Scholar
  20. 20.
    Gröning M (2009) International stable isotope reference materials. In: de Groot PA (ed) Handbook of stable isotope analytical techniques, vol 1. Elsevier, Amsterdam, pp 874–906Google Scholar
  21. 21.
    Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560CrossRefPubMedGoogle Scholar
  22. 22.
    Mosandl A (2004) Authenticity assessment: a permanent challenge in food flavor and essential oil analysis. J Chromatogr Sci 42:440–449CrossRefPubMedGoogle Scholar
  23. 23.
    Sessions AL (2006) Isotope-ratio detection for gas chromatography. J Sep Sci 29:1946–1961CrossRefPubMedGoogle Scholar
  24. 24.
    Jochmann MA, Schmidt TC (2012) Compound-specific stable isotope analysis. The Royal Society of Chemistry, CambridgeGoogle Scholar
  25. 25.
    Tobias HJ, Sacks GL, Zhang Y, Brenna JT (2008) Comprehensive two-dimensional gas chromatography combustion isotope ratio mass spectrometry. Anal Chem 80:8613–8621CrossRefPubMedGoogle Scholar
  26. 26.
    Jochmann MA, Blessing M, Haderlein SB, Schmidt TC (2006) A new approach to determine method detection limits for compound-specific isotope analysis of volatile organic compounds. Rapid Commun Mass Spectrom 20:3639–3648CrossRefPubMedGoogle Scholar
  27. 27.
    Elsner M, Couloume GL, SherwoodLollar B (2006) Freezing to preserve groundwater samples and improve headspace quantification limits of water-soluble organic contaminants for carbon isotope analysis. Anal Chem 78:7528–7534CrossRefPubMedGoogle Scholar
  28. 28.
    SherwoodLollar B, Hirschorn SK, Chartrand MMG, Lacrampe-Couloume G (2007) An approach for assessing total instrumental uncertainty in compound-specific carbon isotope analysis: implications for environmental remediation studies. Anal Chem 79:3469–3475CrossRefGoogle Scholar
  29. 29.
    MAT 253 (2002) Operating manual. Issue 04/2002. Copyright Thermo Finigan MAT (GmbH)Google Scholar
  30. 30.
    Schreglmann K, Hoeche M, Steinbeiss S, Reinnicke S, Elsner M (2013) Carbon and nitrogen isotope analysis of atrazine and desethylatrazine at sub-microgram per liter concentrations in groundwater. Anal Bioanal Chem 405:2857–2867CrossRefPubMedGoogle Scholar
  31. 31.
    Blessing M, Jochmann M, Schmidt T (2008) Pitfalls in compound-specific isotope analysis of environmental samples. Anal Bioanal Chem 390:591–603CrossRefPubMedGoogle Scholar
  32. 32.
    Meier-Augenstein W, Watt PW, Langhans CD (1996) Influence of gas chromatographic parameters on measurement of C-13/C-12 isotope ratios by gas-liquid chromatography combustion isotope ratio mass spectrometry. 1. J Chromatogr A 752:233–241CrossRefGoogle Scholar
  33. 33.
    Paul D, Skrzypek G, Fórizs I (2007) Normalization of measured stable isotopic compositions to isotope reference scales – a review. Rapid Commun Mass Spectrom 21:3006–3014CrossRefPubMedGoogle Scholar
  34. 34.
    Merritt DA, Brand WA, Hayes JM (1994) Isotope-ratio-monitoring gas chromatography mass-spectrometry: methods for isotopic calibration. Org Geochem 21:573–583CrossRefPubMedGoogle Scholar
  35. 35.
    Meier-Augenstein W (1997) A reference gas inlet module for internal isotopic calibration in high precision Gas chromatography/combustion-isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 11:1775–1780CrossRefGoogle Scholar
  36. 36.
    Jennings W, Mittlefehldt E, Stremple P (eds) (1997) Analytical gas chromatography, 2nd edn. Academic, San DiegoGoogle Scholar
  37. 37.
    Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 15:501–519CrossRefPubMedGoogle Scholar
  38. 38.
    Zwank L, Berg M, Schmidt TC, Haderlein SB (2003) Compound-specific carbon isotope analysis of volatile organic compounds in the low-microgram per liter range. Anal Chem 75:5575–5583CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Armin H. Meyer
    • 1
  • Michael P. Maier
    • 1
  • Martin Elsner
    • 1
    Email author
  1. 1.Helmholtz Zentrum München, German Research Center for Environmental HealthInstitute of Groundwater EcologyNeuherbergGermany

Personalised recommendations