Protocols for Measuring Activity of Sulphate-Reducing Bacteria in Water Injection Systems by Radiorespirometric Assay

  • Gunhild BødtkerEmail author
  • Terje Torsvik
Part of the Springer Protocols Handbooks book series (SPH)


Growth and activity of sulphate-reducing bacteria (SRB) is a problem for offshore oil fields injecting sea water for pressure support. Oxygen is traditionally removed before injection to reduce corrosion. The anoxic conditions and high sulphate content of sea water promotes growth and activity of SRB in the water injection system and in the reservoir. The major concern top side in the water injection system is microbiologically influenced corrosion (MIC) caused by SRB activity. Combined with the assessment of corrosion rates, monitoring of SRB activity is applied to evaluate treatment methods and optimize treatment regimens. The aim is to reduce corrosion and maintenance cost and ensure a healthy work environment for platform personnel. In the current chapter we will describe a radiorespirometric method for assessment of H2S production rate in biofilm from water injection systems.


Biofilm H2S production rate MIC Sea water injection Sulphate Sulphate-reducing bacteria Sulphate-reduction rate 


  1. 1.
    Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832CrossRefPubMedGoogle Scholar
  3. 3.
    Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454PubMedGoogle Scholar
  4. 4.
    Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276CrossRefPubMedGoogle Scholar
  5. 5.
    Rueter P, Rabus R, Wilkes H et al (1994) Anaerobic oxidation of hydrocarbons in crude-oil by new types of sulfate-reducing bacteria. Nature 372:455–458CrossRefPubMedGoogle Scholar
  6. 6.
    Sunde E, Thorstenson T, Torsvik T (1990) Growth of bacteria on water injection additives. Soc Pet Eng 20690:301–316Google Scholar
  7. 7.
    Maxwell S, Hamilton WA (1986) Modified radiorespirometric assay for determining the sulfate reduction activity of biofilms on metal-surfaces. J Microbiol Methods 5:83–91CrossRefGoogle Scholar
  8. 8.
    Ulrich GA, Krumholz LR, Suflita JM (1997) A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides. Appl Environ Microbiol 63:1627–1630PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ulrich GA, Krumholz LR, Suflita JM (1997) A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides. Appl Environ Microbiol 63:4626, 1627PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hsieh YP, Shieh YN (1997) Analysis of reduced inorganic sulfur by diffusion methods: Improved apparatus and evaluation for sulfur isotopic studies. Chem Geol 137:255–261CrossRefGoogle Scholar
  11. 11.
    Meier J, Voigt A, Babenzien HD (2000) A comparison of S-35-SO42- radiotracer techniques to determine sulphate reduction rates in laminated sediments. J Microbiol Methods 41:9–18CrossRefPubMedGoogle Scholar
  12. 12.
    Bødtker G, Thorstenson T, Lillebø B-LP et al (2008) The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems. J Ind Microbiol Biotechnol 35:1625–1636CrossRefPubMedGoogle Scholar
  13. 13.
    Sunde E, Lillebø BLP, Bødtker G, Torsvik T, Thorstenson T (2004) H2S inhibition by nitrate injection on the Gullfaks field. Corrosion 2004:paper 04760Google Scholar
  14. 14.
    Thorstenson T, Bødtker G, Lillebø BLP, Torsvik T, Sunde E, Beeder J (2002) Biocide replacement by nitrate in sea water injection systems. Corrosion 2002:paper 02033Google Scholar
  15. 15.
    Drønen K, Roalkvam I, Beeder J et al (2014) Modeling of heavy nitrate corrosion in anaerobe aquifer injection water biofilm: a case study in a flow rig. Environ Sci Technol 48:8627–8635Google Scholar
  16. 16.
    Myhr S, Lillebø BLP, Sunde E, Beeder J, Torsvik T (2002) Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. J Ind Microbiol Biotechnol 58:400–408CrossRefGoogle Scholar
  17. 17.
    Jenneman GE, McInerney MJ, Knapp RM (1986) Effect of nitrate on biogenic sulfide production. Appl Environ Microbiol 51:1205–1211PubMedPubMedCentralGoogle Scholar
  18. 18.
    Dunsmore B, Whitfield TB, Lawson PA, Collins MD (2004) Corrosion by sulfate-reducing bacteria that utilize nitrate. Corrosion 2004, NACE International, Houston TX, USAGoogle Scholar
  19. 19.
    Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G (2003) Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol 5:607–617CrossRefPubMedGoogle Scholar
  20. 20.
    Jørgensen BB, Fenchel T (1974) Sulfur cycle of a marine sediment model system. Mar Biol 24:189–201CrossRefGoogle Scholar
  21. 21.
    Kremling K (1983) Determination of the major constituents. In: Grasshoff K, Ehrhardt K, Kremling K (eds) Methods of seawater analysis, 2nd edn. Verlag Chemie, Weinheim, pp 247–268Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Uni Research CIPRBergenNorway

Personalised recommendations