Methods to Assess the Fate and Impacts of Biofuels in Aquifer Systems

  • Marcio Luis Busi da SilvaEmail author
  • Jie Ma
  • Pedro J. J. Alvarez
Part of the Springer Protocols Handbooks book series (SPH)


Soil and groundwater contamination from accidental or incidental releases of biofuel blends is a growing concern in many countries. Improved understanding of how different biofuel releases behave in the environment and affect the fate and transport of priority pollutants in aquifers is critical for long-term management strategies. Different experimental approaches have been used to advance our understandings of the fate and impacts of biofuel releases in aquifer systems, to develop improved monitoring and remediation approaches, and to validate mathematical fate and transport models. This chapter summarizes currently used experimental approaches, including bench-scale batch tests, laboratory scale column, pilot-scale aquifer tank, and field-scale controlled releases. Physical-chemical analyses commonly used to monitor fate of biofuels and petroleum-based contaminants in groundwater and molecular biomarkers used to quantify catabolic genes associated with the biodegradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) were also summarized in this chapter.


Biodegradation Biofuels Experimental approaches Hydrocarbons 


  1. 1.
    Corseuil HX, Monier AL, Fernandes M, Schneider MR, Nunes CC, do Rosario M, Alvarez PJJ (2011) BTEX plume dynamics following an ethanol blend release: geochemical footprint and thermodynamic constraints on natural attenuation. Environ Sci Technol 45:3422–3429CrossRefPubMedGoogle Scholar
  2. 2.
    Da Silva ML, Alvarez PJJ (2002) Effects of ethanol versus MTBE on Benzene, Toluene, Ethylbenzene, and Xylene natural attenuation in aquifer columns. J Env Eng ASCE 128(9):862–867CrossRefGoogle Scholar
  3. 3.
    Deeb RA, Sharp JO, Stocking A, McDonald S, West KA, Laugier M, Alvarez PJJ, Kavanaugh MC, Alvarez-Cohen L (2002) Impact of ethanol on benzene plume lengths: microbial and modeling studies. J Environ Eng ASCE 128:868–875CrossRefGoogle Scholar
  4. 4.
    Ramos DT, da Silva MLB, Chiaranda HS, Alvarez PJJ, Corseuil HX (2013) Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Biodegradation 24(3):333–341CrossRefPubMedGoogle Scholar
  5. 5.
    Da Silva MLB, Alvarez PJJ (2010) Indole-based assay to assess the effect of ethanol on Pseudomonas putida F1 dioxygenase activity. Biodegradation 21:425–430CrossRefPubMedGoogle Scholar
  6. 6.
    Lovanh N, Alvarez PJJ (2004) Effect of ethanol, acetate, and phenol on toluene degradation activity and tod-lux expression in Pseudomonas putida TOD102: evaluation of the metabolic flux dilution model. Biotechnol Bioeng 86:801–808CrossRefPubMedGoogle Scholar
  7. 7.
    Lovanh N, Hunt CS, Alvarez PJJ (2002) Effect of ethanol on BTEX biodegradation kinetics: aerobic continuous culture experiments. Water Res 36:3739–3746CrossRefPubMedGoogle Scholar
  8. 8.
    Rakoczy J, Schleinitz KM, Muller N, Richnow HH, Vogt C (2011) Effects of hydrogen and acetate on benzene mineralisation under sulphate-reducing conditions. FEMS Microbiol Ecol 77:238–247CrossRefPubMedGoogle Scholar
  9. 9.
    Ma J, Rixey WG, Alvarez PJJ (2015) Increased fermentation activity and persistent methanogenesis in a model aquifer system following source removal of an ethanol blend release. Water Res 68:479–486CrossRefPubMedGoogle Scholar
  10. 10.
    Ma J, Nossa CW, Xiu Z, Rixey WG, Alvarez PJJ (2013) Adaptive microbial population shifts in response to a continuous ethanol blend release increases biodegradation potential. Environ Pollut 178:419–425CrossRefPubMedGoogle Scholar
  11. 11.
    Da Silva MLB, Corseuil HX (2012) Groundwater microbial analysis to assess enhanced BTEX biodegradation by nitrate injection at a gasohol-contaminated site. Int Biodeterior Biodegradation 67:21–27CrossRefGoogle Scholar
  12. 12.
    Freitas JG, Barker JF (2013) Denatured ethanol release into gasoline residuals, part 1: source behaviour. J Contam Hydrol 148:67–68CrossRefPubMedGoogle Scholar
  13. 13.
    Freitas JG, Barker JF (2011) Oxygenated gasoline release in the unsaturated zone – part 1: source zone behavior. J Contam Hydrol 126:153–166CrossRefPubMedGoogle Scholar
  14. 14.
    Spalding RF, Toso MA, Exner ME, Hattan G, Higgins TM, Sekely AC, Jensen SD (2011) Long-term groundwater monitoring results at large, sudden denatured ethanol releases. Ground Water Monit Remediat 31(3):69–81CrossRefGoogle Scholar
  15. 15.
    Ma J, Rixey WG, Alvarez PJJ (2013) Microbial processes influencing the transport, fate and groundwater impacts of fuel ethanol releases. Curr Opin Biotechnol 24:457–466CrossRefPubMedGoogle Scholar
  16. 16.
    Powers SE, Hunt CS, Heermann SE, Corseuil HX, Rice D, Alvarez PJJ (2001) The transport and fate of ethanol and BTEX in groundwater contaminated by gasohol. Crit Rev Environ Sci Technol 31:79–123CrossRefGoogle Scholar
  17. 17.
    Freitas JG, Fletcher B, Aravena R, Barker JF (2010) Methane production and isotopic fingerprinting in ethanol fuel contaminated sites. Ground Water 48:844–857CrossRefPubMedGoogle Scholar
  18. 18.
    Jewell KP, Wilson JT (2011) A new screening method for methane in soil gas using existing groundwater monitoring wells. Ground Water Monit Remediat 31:82–94CrossRefGoogle Scholar
  19. 19.
    Jourabchi P, Hers I, Mayer KU, Devaull GE, Kolhatkar RV, B B (2013) Numerical modeling study of the influence of methane generation from ethanol-gasoline blends on vapor intrusion. The 2nd international symposium on bioremediation and sustainable environmental technologies, Jacksonville, FLGoogle Scholar
  20. 20.
    Ma J, Luo H, DeVaull GE, Rixey WG, Alvarez PJJ (2014) Numerical model investigation for potential methane explosion and benzene vapor intrusion associated with high-ethanol blend releases. Environ Sci Technol 48:474–481CrossRefPubMedGoogle Scholar
  21. 21.
    Ma J, Rixey WG, DeVaull GE, Stafford BP, Alvarez PJJ (2012) Methane bioattenuation and implications for explosion risk reduction along the groundwater to soil surface pathway above a plume of dissolved ethanol. Environ Sci Technol 46:6013–6019CrossRefPubMedGoogle Scholar
  22. 22.
    Sihota NJ, Mayer KU, Toso MA, Atwater JF (2013) Methane emissions and contaminant degradation rates at sites affected by accidental releases of denatured fuel-grade ethanol. J Contam Hydrol 151:1–15CrossRefPubMedGoogle Scholar
  23. 23.
    Wilson JT, Toso M, Mackay D, Sieyes ND, DeVaull GE (2013) What's the deal with methane at lust spill sites? part 2: vapor intrusion. New England Interstate Water Pollution Control Commission, LowellGoogle Scholar
  24. 24.
    Nelson DK, Lapara TM, Novak PJ (2010) Effects of ethanol-based fuel contamination: microbial community changes, production of regulated compounds, and methane generation. Environ Sci Technol 44:4525–4530CrossRefPubMedGoogle Scholar
  25. 25.
    Ma J, Xiu Z, Monier AL, Mamonkina I, Zhang Y, He Y, Stafford BP, Rixey WG, Alvarez PJJ (2011) Aesthetic groundwater quality impacts from a continuous pilot-scale release of an ethanol blend. Ground Water Monit Remediat 31:47–54CrossRefGoogle Scholar
  26. 26.
    Brown RA, Zimmerman MD, Ririe GT (2010) Attenuation of naturally occurring arsenic at petroleum hydrocarbon–impacted sites. 7th international conference on remediation of chlorinated and recalcitrant compounds, Monterey, CaliforniaGoogle Scholar
  27. 27.
    Standard Methods for Examination of Water and Wastewater (2012) American Public Health Association, American Water Works Association, Water Environmental Federation, 22nd edn. Washington, DCGoogle Scholar
  28. 28.
    U.S. Environmental Protection Agency (1993) Test method 300.1: determination of inorganic anions in drinking water by ion chromatography. U.S. Government Printing Office, CincinnatiGoogle Scholar
  29. 29.
    ASTM method D1945 – 14 (2014) Standard test method for analysis of natural gas by gas chromatography. Approved Nov 1, 2014Google Scholar
  30. 30.
    U.S. Environmental Protection Agency (2007) Test method 815-C: nonhalogenated organics by gas chromatography. U.S. Government Printing Office, Washington, pp 1–36Google Scholar
  31. 31.
    U.S. Environmental Protection Agency (1986) Test method 8100: polynuclear aromatic hydrocarbons. U.S. Government Printing Office, Washington, pp 1–10Google Scholar
  32. 32.
    ASTM method D5599-00 (2005) Standard test method for determination of oxygenates in gasoline by gas chromatography and oxygen selective flame ionization detection. Approved Nov1, 2005Google Scholar
  33. 33.
    ASTM method D6751-15a (2014) Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. Approved Nov 1, 2014Google Scholar
  34. 34.
    Manni G, Caron F (1995) Calibration and determination of volatile fatty acids in waste leachates by gas chromatography. J Chromatogr A 690:2370242CrossRefGoogle Scholar
  35. 35.
    Baldwin BR, Nakatsu CH, Nies L (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol 69:3350–3358CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lillis L, Clipson N, Doyle E (2010) Quantification of catechol dioxygenase gene expression in soil during degradation of 2,4-dichlorophenol. FEMS Microbiol Ecol 73:363–369PubMedGoogle Scholar
  37. 37.
    Phillips LA, Greer CW, Farrell RE, Germida JJ (2012) Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Appl Soil Ecol 52:56–64CrossRefGoogle Scholar
  38. 38.
    Yeh C-H, Lin C-W, Wu C-H (2010) A permeable reactive barrier for the bioremediation of BTEX-contaminated groundwater: microbial community distribution and removal efficiencies. J Hazard Mater 178:74–80CrossRefPubMedGoogle Scholar
  39. 39.
    Beller HR, Kane SR, Legler TC, Alvarez PJJ (2002) A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 36:3977–3984CrossRefPubMedGoogle Scholar
  40. 40.
    Staats M, Braster M, Roling WFM (2011) Molecular diversity and distribution of aromatic hydrocarbon-degrading anaerobes across a landfill leachate plume. Environ Microbiol 13:1216–1227CrossRefPubMedGoogle Scholar
  41. 41.
    Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801CrossRefPubMedGoogle Scholar
  42. 42.
    Alvarez PJJ, Illman WA (2005) Bioremediation technologies. In: Alvarez PJJ, Illman WA (eds) Bioremediation and natural attenuation: process fundamentals and mathematical models. Wiley, HobokenCrossRefGoogle Scholar
  43. 43.
    Schnoor JL (1996) Environmental modeling: fate and transport of pollutants in water, air, and soil. Wiley, New York, 682Google Scholar
  44. 44.
    Alvarez PJJ, Cronkhite LA, Hunt CS (1998) Use of benzoate to establish reactive buffer zones for enhanced attenuation of BTX migration: aquifer column experiments. Environ Sci Technol 32:509–515CrossRefGoogle Scholar
  45. 45.
    Siegrist H, McCarty PL (1987) Column methodologies for determining sorption and biotransformation potential for chlorinated aliphatic compounds in aquifers. J Contam Hydrol 2:31–50CrossRefGoogle Scholar
  46. 46.
    Von Gunten U, Zobrist J (1993) Biogeochemical changes in groundwater-infiltration systems – column studies. Geochim Cosmochim Acta 57:3895–3906CrossRefGoogle Scholar
  47. 47.
    Bauer RD, Rolle M, Kürzinger P, Grathwohl P, Meckenstock RU, Griebler C (2009) Two-dimensional flow-through microcosms versatile test systems to study biodegradation processes in porous aquifers. J Hydrol 369:284–295CrossRefGoogle Scholar
  48. 48.
    Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. Wiley, New YorkGoogle Scholar
  49. 49.
    Ramos DT, Da Silva MLB, Nossa CW, Alvarez PJJ, Corseuil HX (2013) Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Biodegradation 24(3):681–691CrossRefGoogle Scholar
  50. 50.
    Da Silva MLB, Gomez D, Alvarez PJJ (2012) Analytical model for BTEX natural attenuation in the presence of fuel ethanol and its anaerobic metabolite acetate. Contam Hydrogeol 146:1–7CrossRefGoogle Scholar
  51. 51.
    Ma J, Deng Y, Yuan T, Zhou J, Alvarez PJJ (2015) Succession of microbial functional communities in response to a pilot-scale ethanol-blended fuel release throughout the plume life cycle. Environ Pollut 198:154–160CrossRefPubMedGoogle Scholar
  52. 52.
    Da Silva MLB, Alvarez PJJ (2007) Assessment of anaerobic benzene degradation potential using 16S rRNA gene-targeted real-time PCR. Environ Microbiol 9:72–80CrossRefPubMedGoogle Scholar
  53. 53.
    Capiro NL, Da Silva MLB, Stafford Brent P, Rixey WG, Alvarez PJJ (2008) Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank. Environ Microbiol 10:2236–2244CrossRefPubMedGoogle Scholar
  54. 54.
    Da Silva MLB, Daprato RC, Gomez DE, Hughes JB, Ward CH, Alvarez PJJ (2006) Comparison of bioaugmentation and biostimulation for the enhancement of DNAPL source zone bioremediation. Water Environ Res 78(13):2456–2465CrossRefPubMedGoogle Scholar
  55. 55.
    Cápiro NL, Da Silva ML, Stafford BP, Rixey WG, Alvarez PJJ (2008) Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank. Environ Microbiol 10(9):2236–2244CrossRefPubMedGoogle Scholar
  56. 56.
    Cirpka OA, Windfuhr C, Bisch G, Granzow S, Scholz-Muramatsu H, Kobus H (1999) Microbial reductive dechlorination in large-scale sandbox model. J Environ Eng 25:861–870CrossRefGoogle Scholar
  57. 57.
    Huang WE, Oswald SE, Lerner DD, Smith CC, Zheng C (2003) Dissolved oxygen imaging in a porous medium to investigate biodegradation in a plume with limited electron acceptor supply. Environ Sci Technol 37:1905–1911CrossRefPubMedGoogle Scholar
  58. 58.
    Rees HC, Oswald SE, Banwart SA, Pickup RW, Lerner DN (2007) Biodegradation Processes in a laboratory-scale groundwater contaminant plume assessed by fluorescence imaging and microbial analysis application. Environ Microbiol 73(12):3865–3876CrossRefGoogle Scholar
  59. 59.
    Thullner M, Mauclaire L, Schroth MH, Kinzelbach W, Zeyer J (2002) Interaction between water flow and spatial distribution of microbial growth in a two dimensional flow field in saturated porous media. J Contam Hydrol 58:169–189CrossRefPubMedGoogle Scholar
  60. 60.
    Corseuil HX, Kaipper BIA, Fernandes M (2004) Cosolvency effect in subsurface systems contaminated with petroleum hydrocarbons and ethanol. Water Res 38(6):1449–1456CrossRefPubMedGoogle Scholar
  61. 61.
    Schneider AC (2010) Remoção de nitrato de águas subterrâneas após biorremediação de gasolina com etanol. Environmental engineering graduation report, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil, 85 ppGoogle Scholar
  62. 62.
    Anneser B, Einsiedl F, Meckenstock RU, Ritchers L, Griebler C (2008) High-resolution monitoring of biogeochemical gradients in a tar oil-contaminated aquifer. Appl Geochem 23:1715–1730CrossRefGoogle Scholar
  63. 63.
    Mackay DM, Sieyes NR, Einarson MD, Feris KP, Pappas AA, Wood IA, Jacobson L, Justice LG, Noske MN, Scow KM, Wilson JT (2006) Impact of ethanol on the natural attenuation of benzene, toluene, and o-xylene in a normally sulfate-reducing aquifers. Environ Sci Technol 40:6123–6130CrossRefPubMedGoogle Scholar
  64. 64.
    Borden RC, Daniel RA, Lebrun LE, Davis CW (1997) Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer. Water Resour Res 33(5):1105–1115CrossRefGoogle Scholar
  65. 65.
    Kao CM, Wang CC (2000) Control of BTEX migration by intrinsic bioremediation at a gasoline spill site. Water Res 34(13):3413–3423CrossRefGoogle Scholar
  66. 66.
    Chiang CY, Salanitro JP, Chai EY, Colthart JD, Klein CL (1989) Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer-data analysis and computer modeling. Ground Water 27:823–834CrossRefGoogle Scholar
  67. 67.
    Buscheck TE, Alcantar CM (1995) Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In Proceeding of the 1995 Battelle international symposium on in situ and on-site, April 1995Google Scholar
  68. 68.
    Zhang Y-K, Heathcote RC (2003) An improved method for estimation of biodegradation rate with field data. Ground Water Monit Remediat 23:112–116CrossRefGoogle Scholar
  69. 69.
    Wiedemeier TH, Swanson MA, Wilson JT, Kampbell DH, Miller RN, Hansen JE (1996) Approximation of biodegradation rate constants for monoaromatic hydrocarbons (BTEX) in ground water. Ground Water Monit Remediat 16:186–194CrossRefGoogle Scholar
  70. 70.
    Gillham RW, Robin MJL, Ptacek CJ (1990) A device for in situ determination of geochemical transport parameters 1 retardation. Ground Water 28(5):666–672CrossRefGoogle Scholar
  71. 71.
    Gillham RW, Starr RC, Miller DJ (1990) A device for in situ determination of geochemical transport parameters 2. Biochemical reactions. Ground Water 28(6):858–862CrossRefGoogle Scholar
  72. 72.
    Higgo JJW, Nielsen PH, Bannon MP, Harrison I, Christensen TH (1996) Effect of geochemical conditions on fate of organic compounds in groundwater. Environ Geol 27:335–346CrossRefGoogle Scholar
  73. 73.
    Nielsen PH, Bjerg PL, Nielsen P, Smith P, Christensen TH (1996) In situ and laboratory determined first-order rate constants of specific organic compounds in an aerobic aquifer. Environ Sci Technol 30:31–37CrossRefGoogle Scholar
  74. 74.
    Audí-Miró C, Cretnik S, Torrentó C, Rosell M, Shouakar-Stash O, Otero N, Palau J, Elsner M, Soler A (2015) J Hazard Mater.  10.1016/j.jhazmat.2015.06.052
  75. 75.
    Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491CrossRefPubMedGoogle Scholar
  76. 76.
    Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631CrossRefPubMedGoogle Scholar
  77. 77.
    Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J Contam Hydrol 75:215–255CrossRefPubMedGoogle Scholar
  78. 78.
    Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jeannottat S, Sakaguchi-Soder K, Laaks J, Jochmann MA, Cretnik S, Jager J, Haderlein SB, Schmidt TC, Aravena R, Elsner M (2011) Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an inter laboratory study. Anal Chem 83:7624–7634CrossRefPubMedGoogle Scholar
  79. 79.
    Jochmann MA, Blessing M, Haderlein SB, Schmidt TC (2006) A new approach to determine method detection limits for compound-specific isotope analysis of volatile organic compounds. Rapid Commun Mass Spectrom 20:3639–3648CrossRefPubMedGoogle Scholar
  80. 80.
    Beller HR, Kane SR, Legler TC, McKelvie JR, Lollar BS, Pearson F, Balser L, MacKay DM (2008) Comparative assessments of benzene, toluene, and xylene natural attenuation by quantitative polymerase chain reaction analysis of a catabolic gene, signature metabolites, and compound-specific isotope analysis. Environ Sci Technol 42:6065–6072CrossRefPubMedGoogle Scholar
  81. 81.
    Da Silva MLB, Ward CH, Alvarez PJJ, Gomez DE, Hughes JB (2009) Reductions in DNAPL longevity through biological flux enhancement. ESTCP Project ER-0438Google Scholar
  82. 82.
    Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout north America and Europe. Appl Environ Microbiol 68(2):485–495CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Da Silva MLB, Alvarez PJJ (2004) Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in bioaugmented aquifer columns. Appl Environ Microbiol 70(8):4720–4726CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Carmen L, Dennis P, Acheson C, Barros N, Major D, Petrovskis E, Löffler F, Ritalahti K, Yeager C, Edwards E, Hatt J, Ogles D (2014) Standardized procedures for use of nucleic acid-based tools – recommendations for groundwater sampling and analysis using qPCR. SERDP Project ER-1561Google Scholar
  85. 85.
    Ramos DT, Da Silva MLB, Nossa CW, Alvarez PJJ, Corseuil HX (2014) Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20). Biodegradation 25:681–691CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marcio Luis Busi da Silva
    • 1
    Email author
  • Jie Ma
    • 2
  • Pedro J. J. Alvarez
    • 3
  1. 1.EMBRAPAConcórdiaBrazil
  2. 2.State Key Laboratory of Heavy Oil ProcessingCollege of Chemical Engineering, China University of PetroleumBeijingChina
  3. 3.Department of Civil and Environmental EngineeringRice UniversityHoustonUSA

Personalised recommendations