Advertisement

Protocols for the Study of Microbe–Mineral Interactions in Modern Microbialites

  • Estelle CouradeauEmail author
  • Karim Benzerara
  • David Moreira
  • Purificación López-GarcíaEmail author
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Microbialites are organo-sedimentary structures formed by the direct or indirect action of microorganisms. Fossil stromatolites (laminated microbialites) constitute the oldest reliable traces of life, a fact that generates considerable interest in how these structures are formed and what biogenic traces can be preserved. Although found extensively in the fossil record, these structures are restricted today to a few marine and freshwater settings. Microbialites have a dual nature, where mineral and microbial roles are highly imbricated. This attribute poses a serious challenge for study from both a biological and mineralogical point of view. Here we detail protocols for sampling design, collection, fixation, and storage, propose a flowchart to carry out molecular surveys of microbialite microbial communities, and review a variety of correlative microscopies (light, confocal laser scanning, and electron and X-ray microscopies) to analyze the mineralogy and spatial distribution of microbialite components. These protocols are accompanied by potential solutions to problems related to the complexity of these systems.

Keywords:

Biomineralization Confocal laser scanning microscopy Electron microscopy Microbial diversity Microbialite X-ray microscopy 

References

  1. 1.
    Burne RV, Moore LS (1987) Microbialites; organosedimentary deposits of benthic microbial communities. Palaios 2:241–254CrossRefGoogle Scholar
  2. 2.
    Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162CrossRefGoogle Scholar
  3. 3.
    Couradeau E, Benzerara K, Gerard E, Moreira D, Bernard S, Brown GE, Lopez-Garcia P, Gérard E, López-García P (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336:459–462CrossRefPubMedGoogle Scholar
  4. 4.
    Benzerara K, Skouri-Panet F, Li J, Ferard C, Gugger M, Laurent T, Couradeau E, Ragon M, Cosmidis J, Margaret-Olivier I, Tavera R, Lopez-Garcia P, Moreira D (2014) Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci 111(30):10933–10938CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kamennaya N, Ajo-Franklin C, Northen T, Jansson C (2012) Cyanobacteria as biocatalysts for carbonate mineralization. Minerals 2:338–364CrossRefGoogle Scholar
  6. 6.
    Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:21–44CrossRefGoogle Scholar
  7. 7.
    Riding R (2000) Microbial carbonates : the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179–214CrossRefGoogle Scholar
  8. 8.
    Buick R (2008) When did oxygenic photosynthesis evolve? Philos Trans R Soc Lond B Biol Sci 363:2731–2743CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Słowakiewicz M, Mikołajewski Z (2011) Upper Permian Main Dolomite microbial carbonates as potential source rocks for hydrocarbons (W Poland). Mar Pet Geol 28:1572–1591CrossRefGoogle Scholar
  10. 10.
    Brocks JJ, Pearson A (2005) Building the biomarker tree of life. Rev Mineral Geochem 59:233–258CrossRefGoogle Scholar
  11. 11.
    Wade BD, Garcia-Pichel F (2003) Evaluation of DNA extraction methods for molecular analyses of microbial communities in modern calcareous microbialites. Geomicrobiol J 20:549–561CrossRefGoogle Scholar
  12. 12.
    Brocks JJ, Summons RE (2004) Sedimentary hydrocarbons, biomarkers for early life. In: Schlesinger W (ed) Biogeochemistry. Elsevier, Oxford, pp 63–115Google Scholar
  13. 13.
    Allen MA, Neilan BA, Burns BP, Jahnke LL, Summons RE (2010) Lipid biomarkers in Hamelin Pool microbial mats and stromatolites. Org Geochem 41:1207–1218CrossRefGoogle Scholar
  14. 14.
    Prosser JI (2010) Replicate or lie. Environ Microbiol 12:1806–1810CrossRefPubMedGoogle Scholar
  15. 15.
    Kaźmierczak J, Kempe S, Kremer B, López-García P, Moreira D, Tavera R (2011) Hydrochemistry and microbialites of the alkaline crater lake Alchichica, Mexico. Facies 57:1–28CrossRefGoogle Scholar
  16. 16.
    Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74:5088–5090CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pace N, Stahl D, Lane D, Olsen G (1986) The analysis of natural microbial populations by ribosomal RNA sequences. In: Marshall KC (ed) Advances in microbial ecology. Springer, USA, pp 1–55CrossRefGoogle Scholar
  18. 18.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  19. 19.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nubel U, GarciaPichel F, Muyzer G, Garcia-pichel F (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedPubMedCentralGoogle Scholar
  21. 21.
    Taton A, Grubisic S, Brambilla E, de Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial Mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607CrossRefPubMedGoogle Scholar
  23. 23.
    Bower SM, Carnegie RB, Goh B, Jones SRM, Lowe GJ, Mak MWS (2004) Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues. J Eukaryot Microbiol 51:325–332CrossRefPubMedGoogle Scholar
  24. 24.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol Rev 59:143–169Google Scholar
  25. 25.
    Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon J, Soulas G, Catroux G (2001) DNA extraction from soils : old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Couradeau E, Benzerara K, Moreira D, Gerard E, Kazmierczak J, Tavera R, Lopez-Garcia P (2011) Prokaryotic and eukaryotic community structure in field and cultured microbialites from the alkaline lake alchichica (Mexico). PLoS One 6:e28767CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mcswain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051–1057CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tamagnini P, Troshina O, Oxelfelt F, Salema R, Lindblad P (1997) Hydrogenases in nostoc sp. strain PCC 73102, a strain lacking a bidirectional enzyme. Appl Environ Microbiol 63:1801–1807PubMedPubMedCentralGoogle Scholar
  29. 29.
    Caron DA, Countway PD, Savai P, Gast RJ, Schnetzer A, Moorthi SD, Dennett MR, Moran DM, Jones AC (2009) Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl Environ Microbiol 75:5797–5808CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zinger L, Gobet A, Pommier T (2012) Two decades of describing the unseen majority of aquatic microbial diversity. Mol Ecol 21:1878–1896CrossRefPubMedGoogle Scholar
  31. 31.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high- throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bachy C, Dolan JR, López-García P, Deschamps P, Moreira D (2013) Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. ISME J 7:244–255CrossRefPubMedGoogle Scholar
  33. 33.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schloss PD (2010) The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. PLoS Comput Biol 6:e1000844CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Philippe H (1993) MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res 21:5264–5272CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Breitbart M, Hoare A, Nitti A, Siefert J, Haynes M, Dinsdale E, Edwards R, Souza V, Rohwer F, Hollander D (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro CiEnegas, Mexico. Environ Microbiol 11:16–34CrossRefPubMedGoogle Scholar
  42. 42.
    Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161CrossRefPubMedGoogle Scholar
  43. 43.
    Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6:e1000667CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Couradeau E, Benzerara K, Gérard E, Estève I, Moreira D, Tavera R, López-García P (2013) Cyanobacterial calcification in modern microbialites at the submicrometer scale. Biogeosciences 10:5255–5266CrossRefGoogle Scholar
  45. 45.
    Bernhard JM, Visscher PT, Bowser SS (2003) Submillimeter life positions of bacteria, protists, and metazoans in laminated sediments of the Santa Barbara basin. Limnol Oceanogr 48:813–828CrossRefGoogle Scholar
  46. 46.
    Baumgartner LK, Spear JR, Buckley DH, Pace NR, Reid RP, Dupraz C, Visscher PT (2009) Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. Environ Microbiol 11:2710–2719CrossRefPubMedGoogle Scholar
  47. 47.
    Mobberley JM, Ortega MC, Foster JS (2011) Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. Environ Microbiol 14:82–100CrossRefPubMedGoogle Scholar
  48. 48.
    Allen MA, Goh F, Burns BP, Neilan BA (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 7:82–96CrossRefPubMedGoogle Scholar
  49. 49.
    Jeffrey SW (1972) Preparation and some properties of crystalline chlorophyll c1 and c2 from marine algae. Biochim Biophys Acta 279:15–33CrossRefPubMedGoogle Scholar
  50. 50.
    Tyagi VVS, Mayne BC, Peters GA (1980) Purification and initial characterization of phycobiliproteins from the endophytic cyanobacterium of Azolla. Arch Microbiol 128:41–44CrossRefGoogle Scholar
  51. 51.
    Bryant D, Glazer A, Eiserling F (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110:61–75CrossRefPubMedGoogle Scholar
  52. 52.
    Leclerc J-C (1983) Absorption and emission spectra of the phycobiliproteins from the cyanobacteria Pseudoanabaena 7409. Photosynthetica 17:431–441Google Scholar
  53. 53.
    Bryant D, Cohen-Bazire G, Glazer A (1981) Characterization of the biliproteins of Gloeobacter violaceus chromophore content of a cyanobacterial phycoerythrin carrying phycourobilin chromophore. Arch Microbiol 129:190–198CrossRefGoogle Scholar
  54. 54.
    Gerard E, Menez B, Couradeau E, Moreira D, Benzerara K, Lopez-Garcia P (2013) Specific carbonate-microbe interactions in the modern microbialites of Lake Alchichica (Mexico). ISME J 10:1997–2009CrossRefGoogle Scholar
  55. 55.
    Posfai M, Kasama T, Dunin-Borkowski RE (2013) Biominerals at the nanoscale: transmission electron microscopy methods for studying the special properties of biominerals. In: Livi KJT (ed) Minerals at the nanoscale. European Mineralogical Union, London, pp 375–433Google Scholar
  56. 56.
    Cosmidis J, Benzerara K (2014) Soft x-ray scanning transmission spectromicroscopy. Characterisation of atomic and molecular structure of spectroscopy and microscopy. Taylor & Francis, London, pp 115–133Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Ecologie Systématique Evolution, Centre National de la Recherche Scientifique – CNRS Université Paris-Sud, AgroParisTech, UniversitÕ Paris-SaclayOrsayFrance
  2. 2.Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie, Sorbonne Universités, Centre National de la Recherche Scientifique, UMR 7590, Université Pierre et Marie Curie Paris 06, Muséum National d’Histoire Naturelle, Institut de Recherche pour le Développement UMR 206ParisFrance
  3. 3.Life Sciences E Wing, School of Life Sciences, Arizona State UniversityTempeUSA

Personalised recommendations