Skip to main content

Single-Cell and Systems Biology Tools for Biofuel Production

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 976 Accesses

Abstract

Microalgae, a promising biomass feedstock for renewable biofuels, efficiently adapt lipid and carbohydrate metabolism in response to environmental changes and produce a variety of biofuel molecules including triacylglycerol (TAG) and starch. During such bioprocesses, cell-to-cell variation of phenotypes has been shown to be crucial for the cells to adapt to the fluctuating environments. Therefore, rapid, real-time and label-free measurements of such biofuel molecules at single-cell resolution are of importance for bioprocess monitoring, control and engineering. Single-cell Raman microspectroscopy can directly detect the change of metabolite profiles in a cell in a non-invasive manner and thus is potentially valuable for these purposes. In this protocol, we show that single-cell Raman spectra (SCRS) can serve as a proxy for quantitatively tracking and screening TAG/starch content at single-cell level. This methodology can screen a large number of cells in a relatively short time and reveal the phenotypic heterogeneity of cells within an isogenic population. Moreover, the measurement, performed at single-cell resolution, does not necessarily require cultivation and thus can be useful for discovery and excavation of novel synthetic-biology parts, modules and cells of bioenergy applications from the vast yet-to-be-cultured microbiota in nature.

*These authors are co-first-authors, i.e., they contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams PJ (2007) Biofuel: microalgae cut the social and ecological costs. Nature 450:478

    Article  CAS  Google Scholar 

  2. Mataa T, Martinsa A, Caetanob N (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  Google Scholar 

  3. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  Google Scholar 

  4. Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  5. Subramanian S, Barry AN, Pieris S, Sayre RT (2013) Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production. Biotechnol Biofuels 6:150

    Article  CAS  Google Scholar 

  6. Smith AM, Zeeman SC (2006) Quantification of starch in plant tissues. Nat Protoc 1:1342–1345

    Article  CAS  Google Scholar 

  7. Rose R, Rose CL, Omi SK, Forry KR et al (1991) Starch determination by perchloric-acid vs enzymes – evaluating the accuracy and precision of 6 colorimetric methods. J Agric Food Chem 39:2–11

    Article  CAS  Google Scholar 

  8. Muller S, Harms H, Bley T (2010) Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 21:100–113

    Article  Google Scholar 

  9. Lidstrom ME, Konopka MC (2010) The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 6:705–712

    Article  CAS  Google Scholar 

  10. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173

    Article  CAS  Google Scholar 

  11. Wang DJ, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28:281–290

    Article  CAS  Google Scholar 

  12. Chen W, Zhang CW, Song LR, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47

    Article  CAS  Google Scholar 

  13. Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM (2010) Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol Bioeng 105:889–898

    CAS  PubMed  Google Scholar 

  14. Weiss TL, Chun HJ, Okada S et al (2010) Raman spectroscopy analysis of botryococcene hydrocarbons from the green microalga Botryococcus braunii. J Biol Chem 285:32458–32466

    Article  CAS  Google Scholar 

  15. Wu HW, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108:3809–3814

    Article  CAS  Google Scholar 

  16. Lee TH, Chang JS, Wang HY (2013) Rapid and in vivo quantification of cellular lipids in Chlorella vulgaris using near-infrared Raman spectrometry. Anal Chem 85:2155–2160

    Article  CAS  Google Scholar 

  17. Wang TT, Ji YT, Wang Y et al (2014) Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnol Biofuels 7:58

    Article  Google Scholar 

  18. Ji YT, He YH, Cui YB et al (2014) Raman spectroscopy provides a rapid, non-invasive method for quantitation of starch in live, unicellular microalgae. Biotechnol J 9:1512–1518

    Article  CAS  Google Scholar 

  19. Wang D, Ning K, Li J et al (2014) Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet 10:e1004094

    Article  Google Scholar 

  20. Li J, Han D, Wang D et al (2014) Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oleaginousness in microalgae. Plant Cell 26:1645–1665

    Article  CAS  Google Scholar 

  21. Harris EH (2009) The chlamydomonas sourcebook: introduction to chlamydomonas and its laboratory use. Academic, Oxford

    Google Scholar 

  22. Wang Y, Ji YT, Wharfe ES et al (2013) Raman activated cell ejection for isolation of single cells. Anal Chem 85:10697–10701

    Article  CAS  Google Scholar 

  23. Li M, Canniffe D, Jackson P et al (2012) Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J 6:875–885

    Article  CAS  Google Scholar 

  24. Jia J, Han D, Gerken HG et al (2015) Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Res 7:66–77

    Article  Google Scholar 

  25. Savitzky A, Golay MJE (1964) Smoothing + differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  26. Stockel S, Meisel S, Elschner M, Rosch P, Popp J (2012) Identification of Bacillus anthracis via Raman spectroscopy and chemometric approaches. Anal Chem 84:9873–9880

    Article  CAS  Google Scholar 

  27. Endres DM, Schindelin JE (2003) A new metric for probability distributions. IEEE Trans Inform Theor 49:1858–1860

    Article  Google Scholar 

  28. Almeida MR, Alves RS, Nascimbem LBLR, Stephani R, Poppi RJ, de Oliveira LFC (2010) Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem 397:2693–2701

    Article  CAS  Google Scholar 

  29. Ewanick SM, Thompson WJ, Marquardt BJ, Bura R (2013) Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy. Biotechnol Biofuels 6:28

    Article  CAS  Google Scholar 

  30. Huang WE, Ward AD, Whiteley AS (2009) Raman tweezers sorting of single microbial cells. Environ Microbiol Rep 1:44–49

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Basic Research Program (2012CB721101), the High-Tech Development Program (2012AA02A707) and the Microevolution Program (91231205) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Wang, T. et al. (2015). Single-Cell and Systems Biology Tools for Biofuel Production. In: McGenity, T.J., Timmis, K.N., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_150

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_150

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49129-4

  • Online ISBN: 978-3-662-49131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics