Advertisement

Protocol for the Standardisation of Transcriptional Measurements

  • Christopher D. Hirst
  • Catherine Ainsworth
  • Geoff Baldwin
  • Richard I. Kitney
  • Paul S. FreemontEmail author
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

A key component of the engineering approach underlying synthetic biology is the use of standardisation to enable better design of biological systems. One of the most important areas to standardise is the measurement of part, device and system activity in order to improve designs and aid sharing of data. While methods for standardising transcriptional measurements have been designed, they have suffered from poor uptake, and as more parts and systems are detailed, potentially useful information and comparison may be being lost. This protocol takes the best of the previously developed standards while adding some advice for best practice and data standardisation, designed to improve the ease with which data collected in separate labs may be shared and used. Standardisation of measurements and data has the potential to allow greater understanding of the biological systems synthetic biologists engineer and in turn lead to better tools to allow the design of larger and more complicated systems.

Keywords

Fluorescence Standardization Synthetic biology Transcription Transcriptional measurement 

Notes

Acknowledgements

We would like to acknowledge Jake Beal for useful discussions regarding the standardisation of flow cytometry results. We also thank EPSRC for funding and colleagues in CSynBI particularly Guy Bart-Stan and Tom Ells.

References

  1. 1.
    Lou C, Stanton B, Chen Y-J, Munsky B, Voigt CA (2012) Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol 30(11):1137–1142CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai QA et al (2013) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10(4):354–360CrossRefPubMedGoogle Scholar
  3. 3.
    Casini A, Macdonald JT, Jonghe JD, Christodoulou G, Freemont PS, Baldwin GS et al (2014) One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy. Nucleic Acids Res 42(1), e7, Epub 2013/10/25CrossRefPubMedGoogle Scholar
  4. 4.
    Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S (2012) Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs 3(1):38–43, Epub 2011/12/01PubMedGoogle Scholar
  5. 5.
    Torella JP, Lienert F, Boehm CR, Chen JH, Way JC, Silver PA (2014) Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications. Nat Protoc 9(9):2075–2089, Epub 2014/08/08CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai QA, Thimmaiah T et al (2013) Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res 41(9):5139–5148CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kosuri S, Goodman DB, Cambray G, Mutalik VK, Gao Y, Arkin AP et al (2013) Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci U S A 110(34):14024–14029CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chappell J, Freemont P (2013) In vivo and in vitro characterization of sigma70 constitutive promoters by real-time PCR and fluorescent measurements. Methods Mol Biol 1073:61–74, Epub 2013/09/03CrossRefPubMedGoogle Scholar
  9. 9.
    Pothoulakis G, Ceroni F, Reeve B, Ellis T (2014) The spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth Biol 3(3):182–187CrossRefPubMedGoogle Scholar
  10. 10.
    Strack RL, Disney MD, Jaffrey SR (2013) A superfolding spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods 10(12):1219–1224, Epub 2013/10/29CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sun ZZ, Yeung E, Hayes CA, Noireaux V, Murray RM (2014) Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth Biol 3(6):387–397CrossRefPubMedGoogle Scholar
  12. 12.
    Chappell J, Jensen K, Freemont PS (2013) Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Res 41(5):3471–3481CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Beal J, Weiss R, Yaman F, Davidsohn N, Adler A (2012) A method for fast, high-precision characterization of synthetic biology devices. MIT-CSAIL-TR-2012-008. 2012(008). Epub 2012/4/7 http://hdl.handle.net/1721.1/69973
  14. 14.
    Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26(7):787–793, Epub 2008/07/10CrossRefPubMedGoogle Scholar
  15. 15.
    Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ et al (2009) Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng 3:4, Epub 2009/03/21CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Takahashi MK, Chappell J, Hayes CA, Sun ZZ, Kim J, Singhal V et al (2015) Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription–translation (TX-TL) systems. ACS Synth Biol 15(4):503–515CrossRefGoogle Scholar
  17. 17.
    Cardinale S, Joachimiak MP, Arkin AP (2013) Effects of genetic variation on the E. coli host-circuit interface. Cell Rep 4(2):231–237, Epub 2013/07/23CrossRefPubMedGoogle Scholar
  18. 18.
    Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139(7):1366–1375, Epub 2010/01/13CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Klumpp S (2011) Growth-rate dependence reveals design principles of plasmid copy number control. PLoS One 6(5), e20403, Epub 2011/06/08CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    University of Wisconsin E. coli Genome Project. EZ Rich Defined Medium. 2002 [updated 5/5/2003; cited 2014 01 May]. http://www.genome.wisc.edu/resources/protocols/ezmedium.htm.
  21. 21.
    University of Wisconsin E. coli Genome Project. MOPS Minimal Medium. 2002 [updated 5/5/2003; cited 2014 01 May]. http://www.genome.wisc.edu/resources/protocols/mopsminimal.htm.
  22. 22.
    Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119(3):736–747PubMedPubMedCentralGoogle Scholar
  23. 23.
    Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39(3):1131–1141, Epub 2010/09/17CrossRefPubMedGoogle Scholar
  24. 24.
    Temme K, Zhao DH, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci U S A 109(18):7085–7090CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Qi L, Haurwitz RE, Shao W, Doudna JA, Arkin AP (2012) RNA processing enables predictable programming of gene expression. Nat Biotechnol 30(10):1002–1006CrossRefPubMedGoogle Scholar
  26. 26.
    Quinn J, Beal J, Bhatia S, Cai P, Chen J, Clancy K, et al. Synthetic Biology Open Language Visual (SBOL Visual), version 1.0. 0. 2013Google Scholar
  27. 27.
    Kneen M, Farinas J, Li YX, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74(3):1591–1599CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N et al (2011) BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J Biol Eng 5:12, Epub 2011/09/22CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Herzenberg LA, Tung J, Moore WA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7(7):681–685, Epub 2006/06/21CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christopher D. Hirst
    • 1
  • Catherine Ainsworth
    • 1
  • Geoff Baldwin
    • 2
  • Richard I. Kitney
    • 1
  • Paul S. Freemont
    • 3
    Email author
  1. 1.Department of Bioengineering, Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
  2. 2.Department of Life Sciences, Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
  3. 3.Department of Medicine, Centre for Synthetic Biology and InnovationImperial College LondonLondonUK

Personalised recommendations