Advertisement

Protocols for Investigating Hydrocarbon-Oxidizing Bacterial Communities in Polar Seas and Ice

  • Lo Giudice AngelinaEmail author
  • Rizzo Carmen
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The chapter describes different methods that can be adopted, simultaneously or separately, in the study of hydrocarbon-oxidizing bacterial communities in polar seas and ice. Three different phases are described. The first deals with the collection and preservation of samples, including techniques and methods that differ depending on the subsequent analyses to be performed. The second step is the enrichment and isolation of hydrocarbon-degrading psychrophiles, while the third one is about several methods for assaying for hydrocarbon-degradation efficiency of strains in enrichments and pure cultures. In this regard, the isolation of hydrocarbon-oxidizing bacteria can be performed from both natural samples and enrichment cultures, along with analyses that can be carried out to confirm/explore the ability of cold-adapted bacterial isolates to degrade hydrocarbons. The chapter deals also with the study of bacterial community dynamics, both in terms of abundance and composition, after enrichment with hydrocarbons.

Keywords:

Bacterial community dynamics Cold-adapted bacteria Hydrocarbon degradation Hydrocarbon-oxidizer isolation 

References

  1. 1.
    Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361CrossRefPubMedGoogle Scholar
  3. 3.
    Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gounot AM (1999) Microbial life in permanently cold soils. In: Margesin R, Schinner F (eds) Cold-adapted organisms: ecology, physiology, enzymology and molecular biology. Springer, Berlin, pp 3–15CrossRefGoogle Scholar
  5. 5.
    Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208CrossRefPubMedGoogle Scholar
  6. 6.
    Yakimov MM, Gentile G, Bruni V, Cappello S, D’Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of Rod Bay (Terra Nova Bay, Ross Sea) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol 49:419–432CrossRefPubMedGoogle Scholar
  7. 7.
    Gerdes B, Brinkmeyer R, Dieckmann G, Helmke E (2005) Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiol Ecol 53:129–139CrossRefPubMedGoogle Scholar
  8. 8.
    Brakstad OG, Lødeng AGG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49:94–103CrossRefPubMedGoogle Scholar
  9. 9.
    Deppe U, Richnow H-H, Michaelis W, Antranikian G (2005) Degradation of crude oil by an Arctic microbial consortium. Extremophiles 9:461–470CrossRefPubMedGoogle Scholar
  10. 10.
    Powell SM, Snape I, Bowman JP, Thompson BAW, Stark JS, McCammon SA, Riddle MJ (2005) A comparison of the short term effects of diesel fuel and lubricant oils on Antarctic benthic microbial community. J Exp Mar Biol Ecol 322:53–65CrossRefGoogle Scholar
  11. 11.
    Powell SM, Bowman JP, Snape I, Stark JS (2003) Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol Ecol 45:135–145CrossRefPubMedGoogle Scholar
  12. 12.
    Prabagaran SR, Manorama R, Delille D, Shivaji S (2007) Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiol Ecol 59:342–355CrossRefPubMedGoogle Scholar
  13. 13.
    Brakstad OG, Nonstad I, Faksness L-G, Brandvik PJ (2008) Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol 55:540–552CrossRefPubMedGoogle Scholar
  14. 14.
    Fuentes S, Méndez V, Aguila P, Seeger M (2014) Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 98:4781–4794CrossRefPubMedGoogle Scholar
  15. 15.
    Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333CrossRefPubMedGoogle Scholar
  16. 16.
    Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315PubMedPubMedCentralGoogle Scholar
  17. 17.
    Philp JC, Whitely AS, Ciric L, Bailey MJ (2005) Monitoring bioremediation. In: Atlas RM, Philp J (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM), Washington, pp 237–292CrossRefGoogle Scholar
  18. 18.
    Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticuspugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123CrossRefPubMedGoogle Scholar
  19. 19.
    Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41:653–673PubMedPubMedCentralGoogle Scholar
  20. 20.
    Rummel JD (2001) Planetary exploration in the time of astrobiology: protecting against biological contamination. Proc Natl Acad Sci 98:2128–2131CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedman EI (ed) Antarctic microbiology. Willey-Liss, New York, pp 265–295Google Scholar
  22. 22.
    Abyzov SS, Mitskevich IN, Poglazova MN, Barkov NI, Lipenkov VY, Bobin NE, Koudryashov BB, Pashkevich VM, Ivanov MV (2001) Microflora in the basal strata at Antarctic ice core above the Vostok Lake. Adv Space Res 28:701–706CrossRefPubMedGoogle Scholar
  23. 23.
    Christner BC (2002) Detection, recovery, isolation and characterization of bacteria in glacial ice and Lake Vostok accretion ice. PhD Thesis, Ohio State UniversityGoogle Scholar
  24. 24.
    Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577CrossRefPubMedGoogle Scholar
  25. 25.
    Karl DM, Bird DF, Björkman K, Shackelford R, Houlihan T, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147CrossRefPubMedGoogle Scholar
  26. 26.
    Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirshtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144CrossRefPubMedGoogle Scholar
  27. 27.
    Bulat SA, Alekhina IA, Blot M, Petit J-R, de Angelis M, Wagenbach D, Lipenkov VY, Vasilyeva LP, Wloch DM, Raynaud D, Lukin VV (2004) DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching life in extreme icy environments. Int J Astrobiol 3:1–12CrossRefGoogle Scholar
  28. 28.
    Alekhina IA, Marie D, Petit JR, Lukin VV, Zubkov VM, Bulat SA (2007) Molecular analysis of bacterial diversity in kerosene-based drilling fluid from the deep ice bore hole at Vostok, East Antarctica. FEMS Microbiol Ecol 59:289–299CrossRefPubMedGoogle Scholar
  29. 29.
    Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485CrossRefGoogle Scholar
  30. 30.
    Hamamura N, Olson SH, Ward DM, Inskeep WP (2006) Microbial population dynamics associated with crude oil biodegradation in diverse soils. Appl Environ Microbiol 72:6316–6324CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Thavasi R, Jayalakshmi S, Banat IM (2011) Biosurfactants from marine bacterial isolates. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp 1367–1373Google Scholar
  32. 32.
    Lo Giudice A, Casella P, Caruso C, Mangano S, Bruni V, De Domenico M, Michaud L (2010) Occurrence and characterization of psychrotolerant hydrocarbon-oxidizing bacteria from surface seawater along the Victoria Land coast (Antarctica). Polar Biol 33:929–943CrossRefGoogle Scholar
  33. 33.
    Michaud L, Di Marco G, Bruni V, Lo Giudice A (2007) Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar Pollut Bull 54:1754–1761CrossRefPubMedGoogle Scholar
  34. 34.
    Hanson KG, Desai JD, Desai AJ (1993) A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnol Tech 7:745–748CrossRefGoogle Scholar
  35. 35.
    Kubota K, Koma D, Matsumiya Y, Chung SY, Kubo M (2008) Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-DCPIP assay. Biodegradation 19:749–757CrossRefPubMedGoogle Scholar
  36. 36.
    Ruberto LAM, Vazquez S, Lobalbo A, Mac Cormack WP (2005) Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarct Sci 17:47–56CrossRefGoogle Scholar
  37. 37.
    Christova N, Tuleva B, Lalchev Z, Jordanovac A, Jordanov B (2004) Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane. Z Naturforsch C 59:70–74PubMedGoogle Scholar
  38. 38.
    Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons—a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33CrossRefGoogle Scholar
  39. 39.
    Berg G, Seech AG, Lee H, Trevors JT (1990) Identification and characterization of a soil bacterium with extracellular emulsifying activity. J Environ Sci Health 25:753–764Google Scholar
  40. 40.
    Satpute SK, Bhawsar BD, Dhakephalkar PK, Chopade BA (2008) Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Mar Sci 37:243–250Google Scholar
  41. 41.
    Vasileva-Tonkova E, Gesheva V (2004) Potential for biodegradation of hydrocarbons by microorganisms isolated from Antarctic soils. Z Naturforsch C 59:140–145CrossRefPubMedGoogle Scholar
  42. 42.
    Margesin R, Labbè D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lo Giudice A, Bruni V, De Domenico M, Michaud L (2010) Psychrophiles-Cold-adapted hydrocarbon-degrading microorganisms. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 3. Springer, Berlin, pp 1897–1922CrossRefGoogle Scholar
  44. 44.
    Delille D, Delille B (2000) Field observations on the variability of crude oil impact on indigenous hydrocarbon-degrading bacteria from sub-Antarctic intertidal sediments. Mar Environ Res 49:403–417CrossRefPubMedGoogle Scholar
  45. 45.
    Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  46. 46.
    Bowman J, McCammon S, Brown M, Nichols D, McMeekin T (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078PubMedPubMedCentralGoogle Scholar
  47. 47.
    Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275CrossRefPubMedGoogle Scholar
  48. 48.
    Brinkmeyer R, Knittel K, Jurgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Grossmann S, Gleitz M (1993) Microbial responses to experimental sea-ice formation: implications for the establishment of Antarctic sea-ice communities. J Exp Mar Biol Ecol 173:273–289CrossRefGoogle Scholar
  50. 50.
    Helmke E, Weyland H (1995) Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Mar Ecol Prog Ser 117:269–287CrossRefGoogle Scholar
  51. 51.
    Rochelle PA, Cragg BA, Fry JC, Parkes RJ, Weightman AJ (1994) Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol Ecol 15:215–226CrossRefGoogle Scholar
  52. 52.
    Malavenda R, Rizzo C, Michaud L, Gerçe B, Bruni V, Syldatk C, Hausmann R, Lo Giudice A (2015) Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol 38:1565–1574CrossRefGoogle Scholar
  53. 53.
    van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbour Laboratory, Cold Spring HarbourGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute for the Marine Coastal Environment, National Research Council (IAMC-CNR)MessinaItaly
  2. 2.Department of Biological and Environmental SciencesUniversity of MessinaMessinaItaly

Personalised recommendations