Volume 2: Hydrocarbon Extraction

  • Daniel J. LetinskiEmail author
  • Roger C. Prince
Part of the Springer Protocols Handbooks book series (SPH)


This chapter outlines the various ways hydrocarbons can be extracted from experimental and environmental matrices, covering both exhaustive and equilibrium methods, highlighting the advantages and drawbacks of the different approaches. In particular, it places them in the light of the methods promulgated by various regulatory bodies that are required for formal monitoring of contaminated sites but also describes how extensions of these methods may be more informative for scientific enquiries.


Hydrocarbons extractions Environmental samples 


  1. 1.
    ASTM (2014) Standards.
  2. 2.
  3. 3.
    USEPA (2014) Hazardous waste test methods.
  4. 4.
    USGS (2014) National environmental methods index.
  5. 5.
    Brassington KJ, Hough RL, Paton GI, Semple KT, Risdon GC, Crossley J, Hay I, Askari K, Pollard SJT (2007) Weathered hydrocarbon wastes: a risk management primer. Crit Rev Environ Sci Technol 37:199–232CrossRefGoogle Scholar
  6. 6.
    Douglas GS, McCarthy KJ, Dahlen DT, Seavey JA, Steinhauer WG, Prince RC, Elmendorf DL (1992) The use of hydrocarbon analyses for environmental assessment and remediation. J Soil Contam 1:197–216CrossRefGoogle Scholar
  7. 7.
    CCME (2001) Reference method for the Canada-Wide Standard for petroleum hydrocarbons in soil – Tier 1 method.
  8. 8.
    Hayes MHB (2006) Solvent systems for the isolation of organic components from soils. Soil Sci Soc Am J 70:986–994CrossRefGoogle Scholar
  9. 9.
    Prince RC, Douglas GS (2005) Quantification of hydrocarbon biodegradation using internal markers. In: Margesin R, Schinner F (eds) Manual of soil analysis – monitoring and assessing soil bioremediation. Springer, Berlin, pp 179–188CrossRefGoogle Scholar
  10. 10.
    National Research Council (1993) Bioremediation – when does it work. National Academies Press, WashingtonGoogle Scholar
  11. 11.
    USEPA (2011) Quality assurance/quality control.
  12. 12.
    Uhler RM, Healey EM, McCarthy KJ, Uhler AD, Stout SA (2003) Molecular fingerprinting of gasoline by a modified EPA 8260 gas chromatography-mass spectrometry method. Int J Environ Anal Chem 83:1–20CrossRefGoogle Scholar
  13. 13.
    Prince RC, Parkerton TF, Lee C (2007) The primary aerobic biodegradation of gasoline hydrocarbons. Environ Sci Technol 41:3316–3321CrossRefPubMedGoogle Scholar
  14. 14.
    Prince RC, Suflita JM (2007) Anaerobic biodegradation of natural gas condensate can be stimulated by the addition of gasoline. Biodegradation 18:515–523CrossRefPubMedGoogle Scholar
  15. 15.
    Voice TC, Kolb B (1994) Comparison of European and American techniques for the analysis of volatile organic compounds in environmental matrices. J Chromatogr Sci 32(8):306–311CrossRefPubMedGoogle Scholar
  16. 16.
    Yilmazcan O, Tumay Ozer E, Izgi B, Gucer S (2013) Optimization of static head-space gas chromatography-mass spectrometry-conditions for the determination of benzene, toluene, ethyl benzene, xylene, and styrene in model solutions. Ekoloji 22:76–83CrossRefGoogle Scholar
  17. 17.
    Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FCY, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90:521–526CrossRefPubMedGoogle Scholar
  18. 18.
    Li X, Du Y, Wu G, Li Z, Li H, Sui H (2012) Solvent extraction for heavy crude oil removal from contaminated soils. Chemosphere 88:245–249CrossRefPubMedGoogle Scholar
  19. 19.
    Dean JR, Xiong G (2000) Extraction of organic pollutants from environmental matrices: selection of extraction technique. Trends Anal Chem 19:553–564CrossRefGoogle Scholar
  20. 20.
    Richter BE (2000) Extraction of hydrocarbon contamination from soils using accelerated solvent extraction. J Chromatogr A 874:217–224CrossRefPubMedGoogle Scholar
  21. 21.
    Saim N, Dean JR, Abdullah MP, Zakaria Z (1997) Extraction of polycyclic aromatic hydrocarbons from contaminated soil using Soxhlet extraction, pressurized and atmospheric microwave-assisted extraction, supercritical fluid extraction and accelerated solvent extraction. J Chromatogr A 791:361–366CrossRefGoogle Scholar
  22. 22.
    Prince R, Owens EH, Sergy GA (2002) Weathering of an Arctic oil spill over 20 years: the BIOS experiment revisited. Mar Pollut Bull 44:1236–1242CrossRefPubMedGoogle Scholar
  23. 23.
    Prince RC, Elmendorf DL, Lute JR, Hsu CS, Haith CE, Senius JD, Dechert GJ, Douglas GS, Butler EL (1994) 17α(H),21β(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28:142–145CrossRefPubMedGoogle Scholar
  24. 24.
    Simpson NJK (2000) Solid-phase extraction: principles, techniques, and applications. CRC, Boca RatonCrossRefGoogle Scholar
  25. 25.
    SUPELCO (1998) Guide to solid phase extraction.
  26. 26.
    Bruzzoniti MC, Fungi M, Sarzanini C (2010) Determination of EPA’s priority pollutant polycyclic aromatic hydrocarbons in drinking waters by solid phase extraction-HPLC. Anal Methods 2:739–745CrossRefGoogle Scholar
  27. 27.
    Fu S, Fan J, Hashi Y, Chen Z (2012) Determination of polycyclic aromatic hydrocarbons in water samples using online microextraction by packed sorbent coupled with gas chromatography–mass spectrometry. Talanta 94:152–157CrossRefPubMedGoogle Scholar
  28. 28.
    Sun F, Littlejohn D, Gibson MD (1998) Ultrasonication extraction and solid phase extraction clean-up for determination of US EPA 16 priority pollutant polycyclic aromatic hydrocarbons in soils by reversed-phase liquid chromatography with ultraviolet absorption detection. Anal Chim Acta 364:1–11CrossRefGoogle Scholar
  29. 29.
    Ugochukwu UC, Jones MD, Head IM, Manning DAC, Fialips CI (2014) Biodegradation and adsorption of crude oil hydrocarbons supported on “homoionic” montmorillonite clay minerals. Appl Clay Sci 87:81–86CrossRefGoogle Scholar
  30. 30.
    Li N, Lee HK (2001) Solid-phase extraction of polycyclic aromatic hydrocarbons in surface water: negative effect of humic acid. J Chromatogr A 921:255–263CrossRefPubMedGoogle Scholar
  31. 31.
    Langenfeld JJ, Hawthorne SB, Miller DJ (1996) Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction. Anal Chem 68:144–155CrossRefPubMedGoogle Scholar
  32. 32.
    Risticevic S, Lord H, Górecki T, Arthur CL, Pawliszyn J (2010) Protocol for solid-phase microextraction method development. Nat Protoc 5:122–139CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65:1843–1852CrossRefGoogle Scholar
  34. 34.
    Zhang Z, Yang MJ, Pawliszyn J (1994) Solid-phase microextraction. A solvent-free alternative for sample preparation. Anal Chem 66:844A–853ACrossRefGoogle Scholar
  35. 35.
    Deng J, Yang Y, Wang X, Luan T (2014) Strategies for coupling solid-phase microextraction with mass spectrometry. Trends Anal Chem 55:55–67CrossRefGoogle Scholar
  36. 36.
    SUPELCO (1998) Solid phase microextraction: theory and optimization of conditions.
  37. 37.
    Vas G, Vékey K (2004) Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J Mass Spectrom 39:233–254CrossRefPubMedGoogle Scholar
  38. 38.
    Letinski D, Parkerton T, Redman A, Manning R, Bragin G, Febbo E, Palandro D, Nedwed T (2014) Use of passive samplers for improving oil toxicity and spill effects assessment. Mar Pollut Bull 86:274–282CrossRefPubMedGoogle Scholar
  39. 39.
    Ouyang G, Pawliszyn J (2006) SPME in environmental analysis. Anal Bioanal Chem 386:1059–1073CrossRefPubMedGoogle Scholar
  40. 40.
    Ouyang G, Pawliszyn J (2008) A critical review in calibration methods for solid-phase microextraction. Anal Chim Acta 627:184–197CrossRefPubMedGoogle Scholar
  41. 41.
    Parkerton TF, Stone MA, Letinski DJ (2000) Assessing the aquatic toxicity of complex hydrocarbon mixtures using solid phase microextraction. Toxicol Lett 112:273–282CrossRefPubMedGoogle Scholar
  42. 42.
    Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley, New YorkGoogle Scholar
  43. 43.
    Rocha MJ, Rocha E, Cruzeiro C, Ferreira PC, Reis PA (2011) Determination of polycyclic aromatic hydrocarbons in coastal sediments from the Porto region (Portugal) by microwave-assisted extraction, followed by SPME and GC-MS. J Chromatogr Sci 49:695–701CrossRefPubMedGoogle Scholar
  44. 44.
    Tang B, Isacsson U (2008) Analysis of mono-and polycyclic aromatic hydrocarbons using solid-phase microextraction: state-of-the-art. Energy Fuel 22:1425–1438CrossRefGoogle Scholar
  45. 45.
    Difilippo E, Eganhouse R (2010) Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds. Environ Sci Technol 44:6917–6925CrossRefPubMedGoogle Scholar
  46. 46.
    Mayer P, Vaes WHJ, Hermens JLM (2000) Absorption of hydrophobic compounds into the poly(dimethylsiloxane) coating of solid-phase microextraction fibers: high partition coefficients. Anal Chem 72:459–464CrossRefPubMedGoogle Scholar
  47. 47.
    ter Laak T, Busser F, Hermens J (2008) Poly(dimethylsiloxane) as passive sampler material for hydrophobic chemicals: effect of chemical properties and sampler characteristics on partitioning and equilibration times. Anal Chem 80:3859–3866CrossRefPubMedGoogle Scholar
  48. 48.
    Sangster J (1989) Octanol-water partition coefficients of simple organic compounds. J Phys Chem Ref Data 18:1111–1229CrossRefGoogle Scholar
  49. 49.
    USEPA (2013) Exposure assessment tools and models.
  50. 50.
    Doong RA, Chang SM, Sun YC (2000) Solid-phase microextraction and headspace solid-phase microextraction for the determination of high molecular-weight polycyclic aromatic hydrocarbons in water and soil samples. J Chromatogr Sci 38:528–534CrossRefPubMedGoogle Scholar
  51. 51.
    Morasch B, Hunkeler D, Zopfi J, Temime B, Höhener P (2011) Intrinsic biodegradation potential of aromatic hydrocarbons in an alluvial aquifer–potentials and limits of signature metabolite analysis and two stable isotope-based techniques. Water Res 45:4459–4469CrossRefPubMedGoogle Scholar
  52. 52.
    Oliveira V, Santos AL, Aguiar C, Santos L, Salvador AC, Gomes N, Silva H, Rocha SM, Almeida A, Cunha A (2012) Prokaryotes in salt marsh sediments of Ria de Aveiro: effects of halophyte vegetation on abundance and diversity. Estuar Coast Shelf Sci 110:61–68CrossRefGoogle Scholar
  53. 53.
    Van Hamme JD, Ward OP (2001) Volatile hydrocarbon biodegradation by a mixed-bacterial culture during growth on crude oil. J Ind Microbiol Biotechnol 26:356–362CrossRefPubMedGoogle Scholar
  54. 54.
    van der Heijden SA, Jonker MTO (2009) PAH bioavailability in field sediments: comparing different methods for predicting in situ bioaccumulation. Environ Sci Technol 43:3757–3763CrossRefPubMedGoogle Scholar
  55. 55.
    Mayer P, Parkerton TF, Adams RG, Cargill JG, Gan J, Gouin T, Gschwend PM, Hawthorne SB, Helm P, Witt G, You J, Escher BI (2014) Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations. Integr Environ Assess Manag 10:197–209CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Krauss M, Wilcke W (2001) Biomimetic extraction of PAHs and PCBs from soil with octadecyl-modified silica disks to predict their availability to earthworms. Environ Sci Technol 35:3931–3935CrossRefPubMedGoogle Scholar
  57. 57.
    van Loon WMGM, Wijnker FG, Verwoerd ME, Hermens JLM (1996) Quantitative determination of total molar concentrations of bioaccumulatable organic micropollutants in water using C18-Empore disk and molar detection techniques. Anal Chem 68:2916–2926CrossRefPubMedGoogle Scholar
  58. 58.
    Esteve-Turrillas FA, Yusà V, Pastor A, de la Guardia M (2008) New perspectives in the use of semipermeable membrane devices as passive samplers. Talanta 74:443–457CrossRefPubMedGoogle Scholar
  59. 59.
    Lee K, Wohlgeschaffen G, Tremblay GH, Johnson BT, Sergy GA, Prince RC, Guénette CC, Owens EH (2003) Toxicity evaluation with the Microtox® test to assess the impact of in situ oiled shoreline treatment options: natural attenuation and sediment relocation. Spill Sci Technol Bull 8:273–284CrossRefGoogle Scholar
  60. 60.
    Boehm PD, Page DS, Brown JS, Neff JM, Bence AE (2005) Comparison of mussels and semi-permeable membrane devices as intertidal monitors of polycyclic aromatic hydrocarbons at oil spill sites. Mar Pollut Bull 50:740–750CrossRefPubMedGoogle Scholar
  61. 61.
    Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046CrossRefGoogle Scholar
  62. 62.
    Juhasz AL, Aleer S, Adetutu EM (2014) Predicting PAH bioremediation efficacy using bioaccessibility assessment tools: validation of PAH biodegradation–bioaccessibility correlations. Int Biodeterior Biodegrad 95:320–329CrossRefGoogle Scholar
  63. 63.
    Puglisi E, Murk AJ, van den Berg HJ, Grotenhuis T (2007) Extraction and bioanalysis of the ecotoxicologically relevant fraction of contaminants in sediments. Environ Toxicol Chem 26:2122–2128CrossRefPubMedGoogle Scholar
  64. 64.
    Aeppli C, Reddy CM, Nelson RK, Kellermann MY, Valentine DL (2013) Recurrent oil sheens at the Deepwater Horizon disaster site fingerprinted with synthetic hydrocarbon drilling fluids. Environ Sci Technol 47:8211–8219CrossRefPubMedGoogle Scholar
  65. 65.
    Taft DG, Egging DE, Kuhn HA (1995) Sheen surveillance: an environmental monitoring program subsequent to the 1989 Exxon Valdez shoreline cleanup. In: Wells PG, Butler JN, Hughes JS (eds) Exxon Valdez oil spill: fate and effects in Alaskan waters, vol 1219, ASTM special technical publication. ASTM, Philadelphia, pp 215–238CrossRefGoogle Scholar
  66. 66.
    USCG (2013) Oil sample handling & transmittal guide.
  67. 67.
    Miget R, Kator H, Oppenheimer C, Laseter JL, Ledet EJ (1974) New sampling device for the recovery of petroleum hydrocarbons and fatty acids from aqueous surface films. Anal Chem 46:1154–1157CrossRefPubMedGoogle Scholar
  68. 68.
    Kjelleberg S, Stenström TA, Odham G (1979) Comparative study of different hydrophobic devices for sampling lipid surface films and adherent microorganisms. Mar Biol 53:21–25CrossRefGoogle Scholar
  69. 69.
    Radović JR, Aeppli C, Nelson RK, Jimenez N, Reddy CM, Bayona JM, Albaigés J (2014) Assessment of photochemical processes in marine oil spill fingerprinting. Mar Pollut Bull 79:268–277CrossRefPubMedGoogle Scholar
  70. 70.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.ExxonMobil Biomedical Sciences, Inc.AnnandaleUSA

Personalised recommendations