Advertisement

Three-Dimensional Visualisation and Quantification of Lipids in Microalgae Using Confocal Laser Scanning Microscopy

  • Narin Chansawang
  • Boguslaw Obara
  • Richard J. Geider
  • Pierre Philippe LaissueEmail author
Protocol
  • 429 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Fluorescence microscopy and digital imaging allow the selective visualisation and quantification of cellular components and can convey research findings in an appealing and intuitive way. These techniques are regularly used in biomedical research laboratories, but have less widespread application in marine sciences. We present here an approach to label and volumetrically quantify neutral lipids, chloroplasts, DNA and cell volumes in microalgae. Using fluorescence microscopy techniques on “turn-key” systems commonly available to environmental research labs, imaging facilities or accessible groups in other disciplines ensure that this approach can be widely reproduced.

Keywords:

Autofluorescence Chlorophyll Fluorescence microscopy Image processing Lipids Localisation Microalgae Nile red Quantification Volumetry 

Abbreviations

2D

Two dimensional

3D

Three dimensional

DAPI

4′,6-Diamidino-2-phenylindole

LUT

Look-up table

NA

Numerical aperture

PPFD

Photosynthetic photon flux density

RT

Room temperature

VC

Violet corrected

Notes

Acknowledgements

N. C. acknowledges support from the Royal Thai Government for sponsoring her PhD research. R. J. G. and P. P. L. acknowledge NERC for supporting algal ecophysiology research and environmental fluorescence microscopy, respectively.

References

  1. 1.
    Bradbury J (2004) Nature’s nanotechnologists: unveiling the secrets of diatoms. PLoS Biol 2(10)Google Scholar
  2. 2.
    Yool A, Tyrrell T (2003) The role of diatoms in regulating the ocean’s silicate cycle. Global Biogeochem Cycles 17(4):1103–1124CrossRefGoogle Scholar
  3. 3.
    Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105–116CrossRefGoogle Scholar
  4. 4.
    Wang XW, Liang JR, Luo CS, Chen CP, Gao YH (2014) Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresour Technol 161:124–130CrossRefPubMedGoogle Scholar
  5. 5.
    Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17(4):374–384CrossRefGoogle Scholar
  6. 6.
    Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635CrossRefPubMedGoogle Scholar
  7. 7.
    Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722CrossRefPubMedGoogle Scholar
  8. 8.
    Chen GQ, Jiang Y, Chen F (2008) Salt-induced alterations in lipid composition of diatom Nitzschia laevis (Bacillariophyceae) under heterotrophic culture condition. J Phycol 44:1309–1314CrossRefPubMedGoogle Scholar
  9. 9.
    Hegarty SG, Villareal TA (1998) Effects of light level and N:P supply ratio on the competition between Phaeocystis cf. pouchetii (Hariot) Lagerhelm (Prymnesiophyceae) and five diatom species. J Exp Mar Bio Ecol 226(2):241–258CrossRefGoogle Scholar
  10. 10.
    Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48:1146–1151CrossRefGoogle Scholar
  11. 11.
    Pennington F, Guillard RR, Liaaen-Jensen S (1988) Carotenoid distribution patterns in Bacillariophyceae (diatoms). Biochem Syst Ecol 16(7):589–592CrossRefGoogle Scholar
  12. 12.
    Bertrand M (2010) Carotenoid biosynthesis in diatoms. Photosynth Res 106(12):89–102CrossRefPubMedGoogle Scholar
  13. 13.
    Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C (2013) Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs 11(7):2667–2681CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61(1):15–24CrossRefPubMedGoogle Scholar
  15. 15.
    Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21(4):273–294CrossRefPubMedGoogle Scholar
  16. 16.
    Jiang H, Gao K (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 40(4):651–654CrossRefGoogle Scholar
  17. 17.
    Chautona MS, Reitan KI, Norskerc NH, Tveteråsd R, Kleivdale HT (2015) A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture 436:95–103CrossRefGoogle Scholar
  18. 18.
    Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances-function, fine-structure, chemistry, and physiology. J Phycol 29:537–566CrossRefGoogle Scholar
  19. 19.
    Wolfstein K, Stal LJ (2002) Production of extracellular polymeric substances (EPS) by benthic diatoms: the effect of irradiance and temperature. Mar Ecol Prog Ser 23:613–622Google Scholar
  20. 20.
    Underwood GJ, Paterson DM (2003) The importance of extracellular carbohydrate production by marine epipelic diatoms. Adv Bot Res 40:183–240CrossRefGoogle Scholar
  21. 21.
    Mimouni V, Ulmann L, Pasquet V, Mathieu M, Picot L, Bougaran G, Cadoret JP, Manceau AM, Schoefs B (2012) The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr Pharm Biotechnol 13(15):2733–2750CrossRefPubMedGoogle Scholar
  22. 22.
    de Jesus Raposo MF, de Morais RMSC, de Morais AMMB (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11(1):233–252CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648CrossRefPubMedGoogle Scholar
  24. 24.
    Stoermer EF, Julius ML (2003) Centric diatoms. In: Wehr JD, Sheath RG (eds) Freshwater algae of North America. Academic, AmsterdamGoogle Scholar
  25. 25.
    Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical production. Nature 421(6925):841–843CrossRefPubMedGoogle Scholar
  26. 26.
    Paddock SW (1999) Confocal microscopy methods and protocols. In: Paddock SW (ed) Methods in molecular biology. Humana, New JerseyGoogle Scholar
  27. 27.
    Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9CrossRefPubMedGoogle Scholar
  28. 28.
    Guo L, Sui Z, Zhang S, Liu Y, Du Q (2014) Preliminary comparison of quantification efficiency between DNA-derived dataset and cell-derived dataset of mixed diatom sample based on rDNA-ITS sequence analysis. Biochem Syst Ecol 57:183–190CrossRefGoogle Scholar
  29. 29.
    Ma YH, Wang X, Niu YF, Yang ZK, Zhang MH, Wang ZM et al (2014) Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom. Microb Cell Fact 13(1):100PubMedPubMedCentralGoogle Scholar
  30. 30.
    Mekhalfi M, Amara S, Robert S, Carrière F, Gontero B (2014) Effect of environmental conditions on various enzyme activities and triacylglycerol contents in cultures of the freshwater diatom, Asterionella formosa (Bacillariophyceae). Biochimie 101:1–10CrossRefGoogle Scholar
  31. 31.
    Xie WH, Zhu CC, Zhang NS, Li D, Yang WD, Liu JS et al (2014) Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutum. Mar Biotechnol 16:538–546CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wong DM, Franz AK (2013) A comparison of lipid storage in Phaeodactylum tricornutum and Tetraselmis suecica using laser scanning confocal microscopy. J Microbiol Methods 95(2):122–128CrossRefPubMedGoogle Scholar
  33. 33.
    Traller JC, Hildebrand M (2013) High throughput imaging to the diatom Cyclotella cryptica demonstrates substantial cell-to-cell variability in the rate and extent of triacylglycerol accumulation. Algal Res 2(3):244–252CrossRefGoogle Scholar
  34. 34.
    Yang ZK, Niu YF, Ma YH, Xue J, Zhang M, Yang WD et al (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6(1):67CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Friedrichs L, Maier M, Hamm C (2012) A new method for exact three-dimensional reconstructions of diatom frustules. J Microsc 248:208–217CrossRefPubMedGoogle Scholar
  36. 36.
    Horst I, Parker BM, Dennis JS, Howe CJ, Scott SA, Smith AG (2012) Treatment of Phaeodactylum tricornutum cells with papain facilitates lipid extraction. J Biotechnol 162:40–49CrossRefPubMedGoogle Scholar
  37. 37.
    De Martino A, Bartual A, Willis A, Meichenin A, Villazán B, Maheswari U et al (2011) Physiological and molecular evidence that environmental changes elicit morphological interconversion in the model diatom Phaeodactylum tricornutum. Protist 162(3):462–481CrossRefPubMedGoogle Scholar
  38. 38.
    Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239CrossRefPubMedGoogle Scholar
  39. 39.
    Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe, nile red. J Lipid Res 26:781–789PubMedGoogle Scholar
  40. 40.
    Cooksey KE, Guckert JB, Williams SA, Callis PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microbiol Methods 6(6):333–345CrossRefGoogle Scholar
  41. 41.
    Nyquist H (1928) Certain topics in telegraph transmission theory. AIEE 47(2):617–644Google Scholar
  42. 42.
    Shannon CE (1949) Communication in the presence of noise. Proc IRE 37:10–21CrossRefGoogle Scholar
  43. 43.
    Otsu N (1979) A threshold selection method from Gray-level. IEEE Trans Syst Man Cybern 9(1):62–66CrossRefGoogle Scholar
  44. 44.
    Serra J (1982) Image analysis and mathematical morphology. Academic, New YorkGoogle Scholar
  45. 45.
    Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE, Duce S et al (2010) Visualization of image data from cells to organisms. Nat Methods 7(30):S26–S41CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Collier JL (2000) Flow cytometry and the single cell in phycology. J Phycol 36:628–644CrossRefGoogle Scholar
  47. 47.
    Berner T, Dubinsky Z, Wyman K, Falkowski PG (1989) Photoadaptation and the “package” effect in Dunaliella tertiolecta (Chlorophyceae). J Phycol 25:70–78CrossRefGoogle Scholar
  48. 48.
    Brown MR, Dunstan GA, Jeffrey SW, Volkman JK, Barrett SM, LeRoi JM (1993) The influence of irradiance on the biochemical composition of the prymnesiophyte Isochrysis sp. (clone T-ISO). J Phycol 29(5):601–612CrossRefGoogle Scholar
  49. 49.
    Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25(4):686–692CrossRefGoogle Scholar
  50. 50.
    Guihéneuf F, Mimouni V, Ulmann L, Tremblin G (2009) Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J Exp Mar Bio Ecol 369(2):136–143CrossRefGoogle Scholar
  51. 51.
    Crawford R (1973) The protoplasmic ultrastructure of the vegetative cell of Melosira varians C.A. Agardh. J Phycol 9(1):50–61CrossRefGoogle Scholar
  52. 52.
    Bayraktaroğlu E, Legović T, Velasquez ZR, Cruzado A (2003) Diatom Thalassiosira weissflogii in oligotrophic versus eutrophic culture: models and ultrastructure. Ecol Modell 170:237–243CrossRefGoogle Scholar
  53. 53.
    Rodighiero S, Bazzini C, Ritter M, Fürst J, Botta G, Meyer G et al (2008) Fixation, mounting and sealing with nail polish of cell specimens lead to incorrect FRET measurements using acceptor photobleaching. Cell Physiol Biochem 21:489–498CrossRefPubMedGoogle Scholar
  54. 54.
    Shaw PM, Jones GJ, Smith JD, Johns RB (1989) Intraspecific variations in the fatty acids of the diatom Skeletonema costatum. Phytochemistry 28(3):811–815CrossRefGoogle Scholar
  55. 55.
    Michels J (2007) Confocal laser scanning microscopy: using cuticular autofluorescence for high resolution morphological imaging in small crustaceans. J Microsc 227:1–7CrossRefPubMedGoogle Scholar
  56. 56.
    Exposito-Rodriguez M, Laissue PP, Littlejohn GR, Smirnoff N, Mullineaux PM (2013) The use of HyPer to examine spatial and temporal changes in H2O2 in high light-exposed plants. Methods Enzymol 527:185–201CrossRefPubMedGoogle Scholar
  57. 57.
    Laissue PP, Reiter C, Hiesinger PR, Halter S, Fischbach KF, Stocker RF (1999) Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405:543–552CrossRefPubMedGoogle Scholar
  58. 58.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open source platform for biological image analysis. Nat Methods 9(7):676–682CrossRefPubMedGoogle Scholar
  59. 59.
    Rizk A, Paul G, Incardona P, Bugarski M, Mansouri M, Niemann A et al (2014) Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nat Protoc 9(3):586–596CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Narin Chansawang
    • 1
  • Boguslaw Obara
    • 2
  • Richard J. Geider
    • 1
  • Pierre Philippe Laissue
    • 1
    Email author
  1. 1.School of Biological SciencesUniversity of EssexColchesterUK
  2. 2.School of Engineering and Computing SciencesDurham UniversityDurhamUK

Personalised recommendations