Skip to main content

Primers: Bacterial Genes Encoding Enzymes for Aerobic Hydrocarbon Degradation

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Alkanes are saturated hydrocarbons that are ubiquitous in the environment. Microbial degradation pathways evolved to activate and catabolise these compounds in order to gain energy and building blocks for cell growth. These pathways involve a number of hydroxylases, which primarily differ according to the nature of the hydrocarbon itself (e.g. aromatic or aliphatic). Given the widespread distribution of alkanes in the environment, a number of variants of such enzymes are present among microbes. Hence, primers designed to detect such environmental variants would require a database with a sufficiently large number of sequences. In the present chapter, we selected the integral-membrane alkane hydroxylases (AlkB) and cytochrome P450 alkane hydroxylases (CYP153) superfamilies for sketching a general proposal of a design pipeline to target bacterial genes involved in aerobic alkane degradation. Further, we introduce HyDeg, a web-based tool that targets multiple subfamilies of enzymes involved in the microbial degradation of aromatic/aliphatic hydrocarbons. The website allows to retrieve amino acid and nucleotide sequences of the target family and proposes an evolutionary relationship for the selected enzyme.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490

    Article  CAS  PubMed  Google Scholar 

  2. van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    Article  PubMed  Google Scholar 

  3. Maier T, Forster HH, Asperger O, Hahn U (2001) Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 286:652–658

    Article  CAS  PubMed  Google Scholar 

  4. Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C et al (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu C, Wang W, Wu Y, Zhou Z, Lai Q, Shao Z (2011) Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environ Microbiol 13:1168–1178

    Article  CAS  PubMed  Google Scholar 

  7. Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  CAS  PubMed  Google Scholar 

  8. Wang W, Wang L, Shao Z (2010) Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island. Microb Ecol 60:429–439

    Article  PubMed  Google Scholar 

  9. Kloos K, Munch JC, Schloter M (2006) A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. J Microbiol Methods 66:486–496

    Article  CAS  PubMed  Google Scholar 

  10. Smits TH, Rothlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in gram-negative and gram-positive strains. Environ Microbiol 1:307–317

    Article  CAS  PubMed  Google Scholar 

  11. Marchant R, Sharkey FH, Banat IM, Rahman TJ, Perfumo A (2006) The degradation of n-hexadecane in soil by thermophilic geobacilli. FEMS Microbiol Ecol 56:44–54

    Article  CAS  PubMed  Google Scholar 

  12. Quatrini P, Scaglione G, De Pasquale C, Riela S, Puglia AM (2008) Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J Appl Microbiol 104:251–259

    CAS  PubMed  Google Scholar 

  13. Shen FT, Young LS, Hsieh MF, Lin SY, Young CC (2010) Molecular detection and phylogenetic analysis of the alkane 1-monooxygenase gene from Gordonia spp. Syst Appl Microbiol 33:53–59

    Article  CAS  PubMed  Google Scholar 

  14. Sei K, Sugimoto Y, Mori K, Maki H, Kohno T (2003) Monitoring of alkane-degrading bacteria in a sea-water microcosm during crude oil degradation by polymerase chain reaction based on alkane-catabolic genes. Environ Microbiol 5:517–522

    Article  CAS  PubMed  Google Scholar 

  15. van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M et al (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Wang W, Lai Q, Shao Z (2010) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242

    Article  CAS  PubMed  Google Scholar 

  17. Vilchez-Vargas R, Geffers R, Suarez-Diez M, Conte I, Waliczek A, Kaser VS et al (2013) Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system. Environ Microbiol 15:1016–1039

    Article  CAS  PubMed  Google Scholar 

  18. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA et al (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perez-Pantoja D, Donoso R, Junca H, Gonzalez B, Pieper DH (2009) Phylogenomics of aerobic bacterial degradation of aromatics. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1356–1397

    Google Scholar 

  21. Kubota M, Nodate M, Yasumoto-Hirose M, Uchiyama T, Kagami O, Shizuri Y, Misawa N (2005) Isolation and functional analysis of cytochrome P450 CYP153A genes from various environments. Biosci Biotechnol Biochem 69:2421–2430

    Article  CAS  PubMed  Google Scholar 

  22. Vilchez-Vargas R, Junca H, Pieper DH (2010) Metabolic networks, microbial ecology and ‘omics’ technologies: towards understanding in situ biodegradation processes. Environ Microbiol 12:3089–3104

    Article  CAS  PubMed  Google Scholar 

  23. van Beilen JB, Duetz WA, Schmid A, Witholt B (2003) Practical issues in the application of oxygenases. Trends Biotechnol 21:170–177

    Article  PubMed  Google Scholar 

  24. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M et al (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  27. McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N et al (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597–W600

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro Vilchez-Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Scoma, A. et al. (2015). Primers: Bacterial Genes Encoding Enzymes for Aerobic Hydrocarbon Degradation. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_140

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_140

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50427-7

  • Online ISBN: 978-3-662-50428-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics