Advertisement

Fluorescence EEMs and PARAFAC Techniques in the Analysis of Petroleum Components in the Water Column

  • Zhengzhen Zhou
  • Laodong GuoEmail author
  • Christopher L. Osburn
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Fluorescence excitation–emission matrix (EEM) techniques coupled with parallel factor (PARAFAC) modeling have been used in the diagnosis and identification of petroleum and hydrocarbon components in aquatic environments. Here, we provide detailed protocols for the use of UV–Vis spectroscopy and fluorescence spectroscopy and for data acquisition and processing. UV absorbance at different wavelengths is used to derive optical properties, such as absorption coefficient at 254 nm (a254), specific UV absorbance (SUVA254), and spectral slopes at different wavelength intervals (e.g., S275–295) or slope ratio, and data of fluorescence EEMs are used to identify major fluorescence components. In addition, SUVA254 and spectral slope values are related to aromaticity and molecular weights of dissolved organic matter (DOM). Oil-related fluorescent components and specific polycyclic aromatic hydrocarbon (PAH) compounds could be readily identified using fluorescence EEMs, especially when combined with PARAFAC analysis. During and after the Deepwater Horizon oil spill in the Gulf of Mexico, three oil components were found in the water column with maximum Ex/Em at 224–226/328–340, 232–244/346–366, and 264–252/311–324 nm, respectively. Major PAH compounds identified include naphthalene, fluorene, phenanthrene, and others. Oil component ratios can also serve as an indicator for oil degradation status. Optical properties especially fluorescence signatures and fluorescence component ratios serve as a complement to other chemical and molecular analyses of petroleum and hydrocarbon components in seawater.

Keywords

Fluorescence EEMs Hydrocarbon Oil components PARAFAC analysis UV absorbance 

References

  1. 1.
    Christensen JH, Hansen AB, Mortensen J, Andersen O (2005) Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Anal Chem 77(7):2210–2217CrossRefPubMedGoogle Scholar
  2. 2.
    Balsley A, Hansen K, Fitzpatrick M (2014) Detection of oil within the water column. Int Oil Spill Conf Proc 2014(1):2206–2217CrossRefGoogle Scholar
  3. 3.
    Bidleman TF, Castleberry AA, Foreman WT, Zaranski MT, Wall DW (1990) Petroleum hydrocarbons in the surface water of two estuaries in the Southeastern united states. Estuar Coast Shelf Sci 30(1):91–109CrossRefGoogle Scholar
  4. 4.
    Bugden JBC, Yeung CW, Kepkay PE, Lee K (2008) Application of ultraviolet fluorometry and excitation-emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater. Mar Pollut Bull 56(4):677–685. doi: 10.1016/j.marpolbul.2007.12.022 CrossRefPubMedGoogle Scholar
  5. 5.
    Patra D, Mishra AM (2002) Total synchronous fluorescence scan spectra of petroleum products. Anal Bioanal Chem 373(4):304–309. doi: 10.1007/s00216-002-1330-y CrossRefPubMedGoogle Scholar
  6. 6.
    Vandermeulen JH et al (1979) Sediment penetration of Amoco Cadiz oil, potential for future release, and toxicity. Mar Pollut Bull 10(8):222–227. doi: 10.1016/0025-326x(79)90294-7 CrossRefGoogle Scholar
  7. 7.
    Von Der Dick H, Kalkreuth W (1986) Synchronous excitation and three-dimensional fluorescence spectroscopy applied to organic geochemistry. Org Geochem 10(1–3):633–639. doi: 10.1016/0146-6380(86)90060-4 CrossRefGoogle Scholar
  8. 8.
    Wakeham SG (1977) Synchronous fluorescence spectroscopy and its application to indigenous and petroleum-derived hydrocarbons in lacustrine sediments. Environ Sci Tech 11(3):272–276. doi: 10.1021/es60126a012 CrossRefGoogle Scholar
  9. 9.
    Chen RF, Gardner GB (2004) High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions. Mar Chem 89(1–4):103–125CrossRefGoogle Scholar
  10. 10.
    Coble PG (2007) Marine optical biogeochemistry: the chemistry of ocean color. Chem Rev 107(2):402–418CrossRefPubMedGoogle Scholar
  11. 11.
    Coble PG, Green SA, Blough NV, Gagosian RB (1990) Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 348(6300):432–435CrossRefGoogle Scholar
  12. 12.
    Del Vecchio R, Blough NV (2004) On the origin of the optical properties of humic substances. Environ Sci Tech 38(14):3885–3891CrossRefGoogle Scholar
  13. 13.
    Guéguen C, Guo L, Yamamoto-Kawai M, Tanaka N (2007) Colored dissolved organic matter dynamics across the shelf-basin interface in the western Arctic Ocean. J Geophys Res 112(C5):C05038. doi: 10.1029/2006jc003584 CrossRefGoogle Scholar
  14. 14.
    Helms JR et al (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53(3):955–969CrossRefGoogle Scholar
  15. 15.
    Sierra MMD, Giovanela M, Parlanti E, Soriano-Sierra EJ (2006) 3D-fluorescence spectroscopic analysis of HPLC fractionated estuarine fulvic and humic acids. J Brazil Chem Soc 17:113–124CrossRefGoogle Scholar
  16. 16.
    Vodacek A, Blough NV, DeGrandpre MD, Peltzer ET, Nelson RK (1997) Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation. Limnol Oceanogr 42(4):674–686CrossRefGoogle Scholar
  17. 17.
    Weishaar JL et al (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Tech 37(20):4702–4708. doi: 10.1021/es030360x CrossRefGoogle Scholar
  18. 18.
    Kowalczuk P et al (2009) Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: interannual variability. Mar Chem 113(3-4):182–196. doi: 10.1016/j.marchem.2009.01.015 CrossRefGoogle Scholar
  19. 19.
    Murphy KR, Stedmon CA, Waite TD, Ruiz GM (2008) Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar Chem 108(1–2):40–58. doi: 10.1016/j.marchem.2007.10.003 CrossRefGoogle Scholar
  20. 20.
    Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr 6:572–579. doi: 10.4319/lom.2008.6.572 CrossRefGoogle Scholar
  21. 21.
    Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82(3–4):239–254. doi: 10.1016/s0304-4203(03)00072-0 CrossRefGoogle Scholar
  22. 22.
    Walker SA, Amon RMW, Stedmon C, Duan S, Louchouarn P (2009) The use of PARAFAC modeling to trace terrestrial dissolved organic matter and fingerprint water masses in coastal Canadian Arctic surface waters. J Geophys Res 114:G00F06CrossRefGoogle Scholar
  23. 23.
    Alostaz M, Biggar K, Donahue R, Hall G (2008) Petroleum contamination characterization and quantification using fluorescence emission-excitation matrices (EEMs) and parallel factor analysis (PARAFAC). J Environ Eng Sci 7(3):183–197. doi: 10.1139/s07-049 CrossRefGoogle Scholar
  24. 24.
    Booksh KS, Muroski AR, Myrick ML (1996) Single-measurement excitation/emission matrix spectrofluorometer for determination of hydrocarbons in ocean water. 2. Calibration and quantitation of naphthalene and styrene. Anal Chem 68(20):3539–3544. doi: 10.1021/ac9602534 CrossRefGoogle Scholar
  25. 25.
    Ferreira AM, Micaelo C, Vale C (2003) Are coastal resources of NW Portugal fingerprinting hydrocarbons released from the Prestige accident? Ciencias Marinas 29(1):109–114Google Scholar
  26. 26.
    González JJ et al (2006) Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill. Mar Pollut Bull 53(5–7):250–259. doi: 10.1016/j.marpolbul.2005.09.039 CrossRefPubMedGoogle Scholar
  27. 27.
    Kim M et al (2010) Hebei Spirit oil spill monitored on site by fluorometric detection of residual oil in coastal waters off Taean, Korea. Mar Pollut Bull 60(3):383–389. doi: 10.1016/j.marpolbul.2009.10.015 CrossRefPubMedGoogle Scholar
  28. 28.
    Østgaard K, Jensen A (1983) Evaluation of direct fluorescence spectroscopy for monitoring aqueous petroleum solutions. Int J Environ Anal Chem 14(1):55–72CrossRefGoogle Scholar
  29. 29.
    Santos-Echeandía J, Prego R, Cobelo-García A (2008) Influence of the heavy fuel spill from the Prestige tanker wreckage in the overlying seawater column levels of copper, nickel and vanadium (NE Atlantic ocean). J Mar Syst 72(1–4):350–357. doi: 10.1016/j.jmarsys.2006.12.005 CrossRefGoogle Scholar
  30. 30.
    Bianchi TS et al (2014) Deepwater horizon oil in Gulf of Mexico waters after 2 years: transformation into the dissolved organic matter pool. Environ Sci Tech 48(16):9288–9297CrossRefGoogle Scholar
  31. 31.
    Conmy RN et al (2013) Submersible optical sensors exposed to chemically dispersed crude oil: wave tank simulations for improved oil spill monitoring. Environ Sci Tech 48(3):1803–1810CrossRefGoogle Scholar
  32. 32.
    Mendoza WG, Riemer DD, Zika RG (2013) Application of fluorescence and PARAFAC to assess vertical distribution of subsurface hydrocarbons and dispersant during the Deepwater Horizon oil spill. Environ Sci 15(5):1017–1030Google Scholar
  33. 33.
    Zhou Z, Guo L (2012) Evolution of the optical properties of seawater influenced by the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7(2):025301. doi: 10.1088/1748-9326/7/2/025301 CrossRefGoogle Scholar
  34. 34.
    Zhou Z et al (2013) Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM techniques. Mar Chem 148:10–21. doi: 10.1016/j.marchem.2012.10.003 CrossRefGoogle Scholar
  35. 35.
    Zhou Z, Liu Z, Guo L (2013) Chemical evolution of Macondo crude oil during laboratory degradation as characterized by fluorescence EEMs and hydrocarbon composition. Mar Pollut Bull 66(1–2):164–175CrossRefPubMedGoogle Scholar
  36. 36.
    Douglas GS, Owens EH, Hardenstine J, Prince RC (2002) The OSSA II pipeline oil spill: the character and weathering of the spilled oil. Spill Sci Technol Bull 7(3):135–148. doi: 10.1016/s1353-2561(02)00046-4 CrossRefGoogle Scholar
  37. 37.
    Beltrán JL, Ferrer R, Guiteras J (1998) Multivariate calibration of polycyclic aromatic hydrocarbon mixtures from excitation-emission fluorescence spectra. Anal Chim Acta 373(2–3):311–319CrossRefGoogle Scholar
  38. 38.
    Blough NV, Del Vecchio R (2002) Chromophoric DOM in the coastal environment. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 509–546CrossRefGoogle Scholar
  39. 39.
    Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51(4):325–346. doi: 10.1016/0304-4203(95)00062-3 CrossRefGoogle Scholar
  40. 40.
    Coble PG, Del Castillo CE, Avril B (1998) Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Res II Top Stud Oceanogr 45(10–11):2195–2223. doi: 10.1016/s0967-0645(98)00068-x CrossRefGoogle Scholar
  41. 41.
    Guéguen C, Guo L, Tanaka N (2005) Distributions and characteristics of colored dissolved organic matter in the Western Arctic Ocean. Cont Shelf Res 25(10):1195–1207CrossRefGoogle Scholar
  42. 42.
    Stedmon CA, Markager S, Kaas H (2000) Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuar Coast Shelf Sci 51(2):267–278CrossRefGoogle Scholar
  43. 43.
    Twardowski MS, Boss E, Sullivan JM, Donaghay PL (2004) Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar Chem 89(1–4):69–88CrossRefGoogle Scholar
  44. 44.
    Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Tech 36(4):742–746CrossRefGoogle Scholar
  45. 45.
    Ferretto N et al (2014) Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation - emission matrices and parallel factor analysis. Chemosphere 107:344–353CrossRefPubMedGoogle Scholar
  46. 46.
    Lorenzo-Seva U, ten Berge JMF (2006) Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology 2(2):57–64CrossRefGoogle Scholar
  47. 47.
    Cecil TL, Rutan SC (1990) Correction for fluorescence response shifts in polyaromatic hydrocarbon mixtures with an innovations-based Kalman filter method. Anal Chem 62(18):1998–2004CrossRefGoogle Scholar
  48. 48.
    Tucker SA, Acree WE, Cho BP, Harvey RG, Fetzer JC (1991) Spectroscopic properties of polycyclic aromatic hydrocarbons: effect of solvent polarity on the fluorescence emission behavior of select fluoranthene, fluorenochrysene, indenochrysene, and indenopyrene derivatives. Appl Spectrosc 45(10):1699–1705CrossRefGoogle Scholar
  49. 49.
    Murphy KR, Stedmon CA, Graeber D, Bro R (2013) Fluorescence spectroscopy and multi-way techniques. PARAFAC Anal Methods 5(23):6557–6566. doi: 10.1039/c3ay41160e CrossRefGoogle Scholar
  50. 50.
    Andersen CM, Bro R (2003) Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J Chemometr 17(4):200–215. doi: 10.1002/cem.790 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zhengzhen Zhou
    • 1
  • Laodong Guo
    • 1
    Email author
  • Christopher L. Osburn
    • 2
  1. 1.School of Freshwater SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of Marine, Earth, and Atmospheric SciencesNorth Carolina State UniversityRaleighUSA

Personalised recommendations