Advertisement

Measurements of Hydrocarbon Pollutants in Aqueous Samples Using Bacterial Bioreporter Assays

  • Yoann Le Digabel
  • Siham Beggah
  • Jan Roelof van der MeerEmail author
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Bacterial bioreporters are useful tools for analyzing the bioavailability and/or toxic effects of hydrocarbons, especially in aqueous samples. Bioreporters generally consist of a recombinant organism in which a genetic circuit is placed that serves to produce an easily detectable reporter protein in response to contact with the hydrocarbon. In this part, we will mainly focus on reporter assays for short-chain linear alkanes and aromatic solvents with two different inducible reporter proteins (e.g., LuxAB luciferase and EGFP or enhanced green fluorescent protein). We will outline a few procedures on the types of assays that can be performed with the bacterial bioreporters in water samples.

Keywords

Bacteria Bioreporter Inductions Pollutants 

Notes

Acknowledgments

This work was supported by grants from the EC-FP7 program (BRAAVOO, OCEAN-2013-614010) and the Swiss National Science Foundation Nano-Tera program (Envirobot, 20NA21-143082).

References

  1. 1.
    Jouanneau S, Durand MJ, Courcoux P, Blusseau T, Thouand G (2011) Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria. Environ Sci Technol 45:2925–2931CrossRefPubMedGoogle Scholar
  2. 2.
    Chang CY, Yu HY, Chen JJ, Li FB, Zhang HH, Liu CP (2014) Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ Monit Assess 186:1547–1560CrossRefPubMedGoogle Scholar
  3. 3.
    Yuan H, Li T, Ding X, Zhao G, Ye S (2014) Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in surface soils of the Yellow River Delta, China. Mar Pollut Bull 83:258–264CrossRefPubMedGoogle Scholar
  4. 4.
    Crane JL (2014) Source apportionment and distribution of polycyclic aromatic hydrocarbons, risk considerations, and management implications for urban stormwater pond sediments in Minnesota, USA. Arch Environ Contam Toxicol 66:176–200CrossRefPubMedGoogle Scholar
  5. 5.
    Webb E, Bushkin-Bedient S, Cheng A, Kassotis CD, Balise V, Nagel SC (2014) Developmental and reproductive effects of chemicals associated with unconventional oil and natural gas operations. Rev Environ Health 29:307–318CrossRefPubMedGoogle Scholar
  6. 6.
    Doherty VF, Otitoloju AA (2013) Monitoring of soil and groundwater contamination following a pipeline explosion and petroleum product spillage in Ijegun, Lagos Nigeria. Environ Monit Assess 185:4159–4170CrossRefPubMedGoogle Scholar
  7. 7.
    Yang X, Duan J, Wang L, Li W, Guan J, Beecham S, Mulcahy D (2015) Heavy metal pollution and health risk assessment in the Wei River in China. Environ Monit Assess 187:4202Google Scholar
  8. 8.
    Obinaju BE, Graf C, Halsall C, Martin FL (2015) Linking biochemical perturbations in tissues of the African catfish to the presence of polycyclic aromatic hydrocarbons in Ovia River, Niger Delta region. Environ Pollut 201:42–49CrossRefPubMedGoogle Scholar
  9. 9.
    Affum AO et al (2015) Total coliforms, arsenic and cadmium exposure through drinking water in the Western Region of Ghana: application of multivariate statistical technique to groundwater quality. Environ Monit Assess 187:1CrossRefPubMedGoogle Scholar
  10. 10.
    Yin F, John GF, Hayworth JS, Clement TP (2015) Long-term monitoring data to describe the fate of polycyclic aromatic hydrocarbons in Deepwater Horizon oil submerged off Alabama’s beaches. Sci Total Environ 508:46–56CrossRefPubMedGoogle Scholar
  11. 11.
    Yin F, Hayworth JS, Clement TP (2015) A tale of two recent spills-comparison of 2014 galveston bay and 2010 deepwater horizon oil spill residues. PLoS One 10, e0118098CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Di Leonardo R, Mazzola A, Tramati CDD, Vaccaro A, Vizzini S (2012) Highly contaminated areas as sources of pollution for adjoining ecosystems: The case of Augusta Bay (Central Mediterranean). Mar Pollut Bull 89:417–426CrossRefGoogle Scholar
  13. 13.
    Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212CrossRefPubMedGoogle Scholar
  14. 14.
    Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738CrossRefPubMedGoogle Scholar
  15. 15.
    Harms H, Wells MC, van der Meer JR (2006) Whole-cell living biosensors--are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280CrossRefPubMedGoogle Scholar
  16. 16.
    Woutersen M, Belkin S, Brouwer B, van Wezel AP, Heringa MB (2011) Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal Bioanal Chem 400:915–929CrossRefPubMedGoogle Scholar
  17. 17.
    van der Meer JR (2010) Bacterial sensors: synthetic design and application principles. Amos M (ed) Synthesis lectures on synthetic biology, vol 2. Morgan & ClaypoolGoogle Scholar
  18. 18.
    van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522CrossRefPubMedGoogle Scholar
  19. 19.
    van der Meer JR, Tropel D, Jaspers MCM (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020CrossRefPubMedGoogle Scholar
  20. 20.
    Stocker J, Balluch D, Gsell M, Harms H, Feliciano JS, Daunert S, Malik KA, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid field measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750CrossRefPubMedGoogle Scholar
  21. 21.
    Sticher P, Jaspers M, Harms H, Zehnder AJB, van der Meer JR (1997) Development and characterization of a whole cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63:4053–4060PubMedPubMedCentralGoogle Scholar
  22. 22.
    Applegate BM, Kehrmeyer SR, Sayler GS (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethylbenzene, and xylene (BTEX) sensing. Appl Environ Microbiol 64:2730–2735PubMedPubMedCentralGoogle Scholar
  23. 23.
    Tecon R, Beggah S, Czechowska K, Sentchilo V, Chronopoulou PM, McGenity TJ, van der Meer JR (2010) Development of a multistrain bacterial bioreporter platform for the monitoring of hydrocarbon contaminants in marine environments. Environ Sci Technol 144:1049–1055CrossRefGoogle Scholar
  24. 24.
    Cortés-Salazar F, Beggah S, van der Meer JR, Girault HH (2013) Electrochemical As(III) whole-cell based biochip sensor. Biosens Bioelectron 47:237–242CrossRefPubMedGoogle Scholar
  25. 25.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  26. 26.
    Heitzer A, Applegate B, Kehrmeyer S, Pinkart H, Webb OF, Phelps TJ, White DC, Sayler GS (1998) Physiological considerations of environmental applications of lux reporter fusions. J Microbiol Methods 33:45–57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yoann Le Digabel
    • 1
  • Siham Beggah
    • 1
  • Jan Roelof van der Meer
    • 1
    Email author
  1. 1.Department of Fundamental MicrobiologyBâtiment Biophore, Quartier UNIL-Sorge, University of LausanneLausanneSwitzerland

Personalised recommendations