Advertisement

Uracil Excision for Assembly of Complex Pathways

  • Ana Mafalda Cavaleiro
  • Morten T. Nielsen
  • Se Hyeuk Kim
  • Susanna Seppälä
  • Morten H. H. NørholmEmail author
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Despite decreasing prices on synthetic DNA constructs, higher-order assembly of PCR-generated DNA continues to be an important exercise in molecular and synthetic biology. Simplicity and robustness are attractive features met by the uracil excision DNA assembly method, which is one of the most inexpensive technologies available. Here, we describe four different protocols for uracil excision-based DNA editing: one for simple manipulations such as site-directed mutagenesis, one for plasmid-based multigene assembly in Escherichia coli, one for one-step assembly and integration of single or multiple genes into the genome, and a standardized assembly pipeline using benchmarked oligonucleotides for pathway assembly and multigene expression optimization.

Keywords:

BioBricks DNA editing Metabolic engineering Molecular cloning Synthetic biology Uracil excision cloning 

References

  1. 1.
    Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350CrossRefPubMedGoogle Scholar
  2. 2.
    Nisson PE, Rashtchian A, Watkins PC (1991) Rapid and efficient cloning of Alu-PCR products using uracil DNA glycosylase. PCR Methods Appl 1:120–123CrossRefPubMedGoogle Scholar
  3. 3.
    Smith C, Day PJ, Walker MR (1993) Generation of cohesive ends on PCR products by UDG-mediated excision of dU, and application for cloning into restriction digest-linearized vectors. PCR Methods Appl 2:328–332CrossRefPubMedGoogle Scholar
  4. 4.
    Nour-Eldin HH, Hansen BG, Nørholm MHH et al (2006) Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34:e122CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Blanusa M, Schenk A, Sadeghi H et al (2010) Phosphorothioate-based ligase-independent gene cloning (PLICing): an enzyme-free and sequence-independent cloning method. Anal Biochem 406:141–146CrossRefPubMedGoogle Scholar
  6. 6.
    Tillett D (1999) Enzyme-free cloning: a rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Res 27:26eGoogle Scholar
  7. 7.
    Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Publ Group 6:343–345Google Scholar
  9. 9.
    Bitinaite J, Nichols NM (2001) DNA cloning and engineering by uracil excision. Wiley, HobokenGoogle Scholar
  10. 10.
    Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349–361Google Scholar
  11. 11.
    LeProust EM, Peck BJ, Spirin K et al (2010) Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res 38:2522–2540CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nielsen MT, Madsen KM, Seppälä S et al (2014) Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli. ACS Synt Biol 4(3):274–282Google Scholar
  13. 13.
    Nielsen MT, Ranberg JA, Christensen U et al (2014) Microbial synthesis of the forskolin precursor manoyl oxide in enantiomerically pure form. Appl Environ Microbiol 80(23):7258–7265Google Scholar
  14. 14.
    Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2(5)Google Scholar
  15. 15.
    Salomonsen B, Mortensen UH, Halkier BA (2014) USER-derived cloning methods and their primer design. Methods Mol Biol (Clifton, NJ) 1116:59–72Google Scholar
  16. 16.
    Nour-Eldin HH, Geu-Flores F, Halkier BA (2010) USER cloning and USER fusion: the ideal cloning techniques for small and big laboratories. Methods Mol Biol (Clifton, NJ) 643:185–200Google Scholar
  17. 17.
    Nørholm MHH (2010) A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol 10:21CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cavaleiro AM, Kim SH, Seppälä S et al (2015) Accurate DNA assembly and genome engineering with optimized uracil excision cloning. ACS Synth Biol. doi: 10.1021/acssynbio.5b00113 PubMedGoogle Scholar
  19. 19.
    St-Pierre F, Cui L, Priest DG et al (2013) One-step cloning and chromosomal integration of DNA. ACS Synt Biol 2(9):537–541Google Scholar
  20. 20.
    Geu-Flores F, Nour-Eldin HH, Nielsen MT et al (2007) USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucl Acids Res 35, e55CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Genee HJ, Bonde MT, Bagger FO et al (2014) Software-supported USER cloning strategies for site-directed mutagenesis and DNA assembly. ACS Synt Biol 4(3):342–349Google Scholar
  22. 22.
    Nevin DE, Pratt JM (1990) A coupled in vitro transcription-translation system for the exclusive synthesis of polypeptides from the T7-promoter. FEBS Lett 291:259–263CrossRefGoogle Scholar
  23. 23.
    Kudla G, Murray AW, Tollervey D et al (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science (New York, NY). 324:255–258Google Scholar
  24. 24.
    Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science (New York, N.Y.). 342, 475–479Google Scholar
  25. 25.
    Olsen LR, Hansen NB, Bonde MT et al (2011) PHUSER (Primer Help for USER): a novel tool for USER fusion primer design. Nucleic Acids Res 39:W61–W67CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ana Mafalda Cavaleiro
    • 1
  • Morten T. Nielsen
    • 1
    • 2
    • 3
  • Se Hyeuk Kim
    • 1
  • Susanna Seppälä
    • 1
  • Morten H. H. Nørholm
    • 1
    Email author
  1. 1.Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkHørsholmDenmark
  2. 2.Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Center for Synthetic Biology, bioSYNergy, University of CopenhagenCopenhagenDenmark

Personalised recommendations