Skip to main content

Bacterial Secretion Systems for Use in Biotechnology: Autotransporter-Based Cell Surface Display and Ultrahigh-Throughput Screening of Large Protein Libraries

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 712 Accesses

Abstract

In recent years, continuous progress was made in our understanding of bacterial secretion pathways and the application of protein secretion for biotechnology. Efficient protein export is a prerequisite for cost-effective downstream processing, and secretion of a protein of interest may also be useful for certain enzyme assays, for biotransformation reactions, and, in particular, for screening enzyme variants in libraries generated by directed evolution. Cells that display a particular enzyme variant can be exposed to a broad spectrum of different chemical environments, can sustain a broad pH range, and can therefore allow one to probe the desired target protein under defined conditions. In recent years, fluorescent-activated cell sorting (FACS) in combination with cell surface display has become a powerful tool for the activity-based ultrahigh-throughput screening of mutant proteins from large libraries. The below protocol provides the detailed description for the generation of protein libraries, E. coli cell surface display, and library screening using magnetic- and fluorescence-activated cell sorting technologies with an emphasis on activity and selectivity screening of lipases and esterases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holland IB (2010) The extraordinary diversity of bacterial protein secretion mechanisms. Methods Mol Biol 619:1–20

    Article  CAS  PubMed  Google Scholar 

  2. Ma Q, Zhai Y, Schneider JC et al (2003) Protein secretion systems of Pseudomonas aeruginosa and P fluorescens. Biochim Biophys Acta 1611:223–233

    Article  CAS  PubMed  Google Scholar 

  3. Rosenau F, Jaeger KE (2000) Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82:1023–1032

    Article  CAS  PubMed  Google Scholar 

  4. Saier MH Jr (2006) Protein secretion and membrane insertion systems in gram-negative bacteria. J Membr Biol 214:75–90

    Article  CAS  PubMed  Google Scholar 

  5. Natale P, Bruser T, Driessen AJ (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. Biochim Biophys Acta 1778:1735–1756

    Article  CAS  PubMed  Google Scholar 

  6. Kudva R, Denks K, Kuhn P et al (2013) Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 164:505–534

    Article  CAS  PubMed  Google Scholar 

  7. Brockmeier U, Caspers M, Freudl R et al (2006) Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. J Mol Biol 362:393–402

    Article  CAS  PubMed  Google Scholar 

  8. Clerico EM, Maki JL, Gierasch LM (2008) Use of synthetic signal sequences to explore the protein export machinery. Biopolymers 90:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sletta H, Tondervik A, Hakvag S et al (2007) The presence of N-terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high-cell-density cultivations of Escherichia coli. Appl Environ Microbiol 73:906–912

    Article  CAS  PubMed  Google Scholar 

  10. Becker S, Theile S, Heppeler N et al (2005) A generic system for the Escherichia coli cell-surface display of lipolytic enzymes. FEBS Lett 579:1177–1182

    Article  CAS  PubMed  Google Scholar 

  11. Oka T, Sakamoto S, Miyoshi K et al (1985) Synthesis and secretion of human epidermal growth factor by Escherichia coli. Proc Natl Acad Sci U S A 82:7212–7216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anne J, Vrancken K, Van Mellaert L et al (2014) Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. Biochim Biophys Acta 1843:1750–1761

    Article  CAS  PubMed  Google Scholar 

  13. Fu LL, Xu ZR, Li WF et al (2007) Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol Adv 25:1–12

    Article  CAS  Google Scholar 

  14. Harwood CR, Cranenburgh R (2008) Bacillus protein secretion: an unfolding story. Trends Microbiol 16:73–79

    Article  CAS  PubMed  Google Scholar 

  15. Tjalsma H, Bolhuis A, Jongbloed JD et al (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299–310

    Article  CAS  PubMed  Google Scholar 

  17. Degering C, Eggert T, Puls M et al (2010) Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl Environ Microbiol 76:6370–6376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang Z, Yang S, Du G et al (2014) Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. J Ind Microbiol Biotechnol 41:1599–1607

    Article  CAS  PubMed  Google Scholar 

  19. Hausmann S, Wilhelm S, Jaeger KE et al (2008) Mutations towards enantioselectivity adversely affect secretion of Pseudomonas aeruginosa lipase. FEMS Microbiol Lett 282:65–72

    Article  CAS  PubMed  Google Scholar 

  20. Hazes B, Frost L (2008) Towards a systems biology approach to study type II/IV secretion systems. Biochim Biophys Acta 1778:1839–1850

    Article  CAS  PubMed  Google Scholar 

  21. Johnson TL, Abendroth J, Hol WG et al (2006) Type II secretion: from structure to function. FEMS Microbiol Lett 255:175–186

    Article  CAS  PubMed  Google Scholar 

  22. Korotkov KV, Sandkvist M, Hol WG (2012) The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10:336–351

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pineau C, Guschinskaya N, Robert X et al (2014) Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Mol Microbiol 94:126–140

    Article  CAS  PubMed  Google Scholar 

  24. Sandkvist M (2001) Biology of type II secretion. Mol Microbiol 40:271–283

    Article  CAS  PubMed  Google Scholar 

  25. Filloux A (2004) The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694:163–179

    Article  CAS  PubMed  Google Scholar 

  26. Rosenau F, Jaeger KE (2003) Design of systems for overexpression of Pseudomonas lipases. In: Sevendsen A (ed) Enzyme functionality: design, engineering, and screening. Marcel Decker, New York, pp 617–631

    Google Scholar 

  27. Becker S, Höbenreich H, Vogel A et al (2008) Single-cell high-throughput screening to identify enantioselective hydrolytic enzymes. Angew Chem Int Ed Engl 47:5085–5088

    Article  CAS  PubMed  Google Scholar 

  28. Becker S, Schmoldt HU, Adams TM et al (2004) Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr Opin Biotechnol 15:323–329

    Article  CAS  PubMed  Google Scholar 

  29. Grijpstra J, Arenas J, Rutten L et al (2013) Autotransporter secretion: varying on a theme. Res Microbiol 164:562–582

    Article  CAS  PubMed  Google Scholar 

  30. Jose J, Meyer TF (2007) The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol Mol Biol Rev 71:600–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Ulsen P, Rahman S, Jong WS et al (2014) Type V secretion: from biogenesis to biotechnology. Biochim Biophys Acta 1843:1592–1611

    Article  PubMed  Google Scholar 

  32. Wilhelm S, Rosenau F, Becker S et al (2007) Functional cell-surface display of a lipase-specific chaperone. Chembiochem 8:55–60

    Article  CAS  PubMed  Google Scholar 

  33. Dautin N, Bernstein HD (2007) Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol 61:89–112

    Article  CAS  PubMed  Google Scholar 

  34. Henderson IR, Navarro-Garcia F, Nataro JP (1998) The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6:370–378

    Article  CAS  PubMed  Google Scholar 

  35. van Bloois E, Winter RT, Kolmar H et al (2011) Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol 29:79–86

    Article  PubMed  Google Scholar 

  36. Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  PubMed  Google Scholar 

  37. Binder U, Matschiner G, Theobald I et al (2010) High-throughput sorting of an Anticalin library via EspP-mediated functional display on the Escherichia coli cell surface. J Mol Biol 400:783–802

    Article  CAS  PubMed  Google Scholar 

  38. Mistry D, Stockley RA (2006) IgA1 protease. Int J Biochem Cell Biol 38:1244–1248

    Article  CAS  PubMed  Google Scholar 

  39. Pyo HM, Kim IJ, Kim SH et al (2009) Escherichia coli expressing single-chain Fv on the cell surface as a potential prophylactic of porcine epidemic diarrhea virus. Vaccine 27:2030–2036

    Article  CAS  PubMed  Google Scholar 

  40. Jose J (2006) Autodisplay: efficient bacterial surface display of recombinant proteins. Appl Microbiol Biotechnol 69:607–614

    Article  CAS  PubMed  Google Scholar 

  41. Jose J, Maas RM, Teese MG (2012) Autodisplay of enzymes--molecular basis and perspectives. J Biotechnol 161:92–103

    Article  CAS  PubMed  Google Scholar 

  42. Yang TH, Kwon MA, Song JK et al (2010) Functional display of Pseudomonas and Burkholderia lipases using a translocator domain of EstA autotransporter on the cell surface of Escherichia coli. J Biotechnol 146:126–129

    Article  CAS  PubMed  Google Scholar 

  43. Jong WS, Sauri A, Luirink J (2010) Extracellular production of recombinant proteins using bacterial autotransporters. Curr Opin Biotechnol 21:646–652

    Article  CAS  PubMed  Google Scholar 

  44. Jong WS, ten Hagen-Jongman CM, den Blaauwen T et al (2007) Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Mol Microbiol 63:1524–1536

    Article  CAS  PubMed  Google Scholar 

  45. Sauri A, Oreshkova N, Soprova Z et al (2011) Autotransporter beta-domains have a specific function in protein secretion beyond outer-membrane targeting. J Mol Biol 412:553–567

    Article  CAS  PubMed  Google Scholar 

  46. van Ulsen P, van Alphen L, ten Hove J et al (2003) A Neisserial autotransporter NalP modulating the processing of other autotransporters. Mol Microbiol 50:1017–1030

    Article  PubMed  Google Scholar 

  47. Yen YT, Kostakioti M, Henderson IR et al (2008) Common themes and variations in serine protease autotransporters. Trends Microbiol 16:370–379

    Article  CAS  PubMed  Google Scholar 

  48. Wilhelm S, Tommassen J, Jaeger KE (1999) A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 181:6977–6986

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20:178–179

    Article  CAS  PubMed  Google Scholar 

  50. Rutherford N, Mourez M (2006) Surface display of proteins by gram-negative bacterial autotransporters. Microb Cell Fact 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  51. Veiga E, de Lorenzo V, Fernandez LA (1999) Probing secretion and translocation of a beta-autotransporter using a reporter single-chain Fv as a cognate passenger domain. Mol Microbiol 33:1232–1243

    Article  CAS  PubMed  Google Scholar 

  52. Valls M, Atrian S, de Lorenzo V et al (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665

    Article  CAS  PubMed  Google Scholar 

  53. Klauser T, Pohlner J, Meyer TF (1990) Extracellular transport of cholera toxin B subunit using Neisseria IgA protease beta-domain: conformation-dependent outer membrane translocation. EMBO J 9:1991–1999

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Maurer J, Jose J, Meyer TF (1997) Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J Bacteriol 179:794–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fleetwood F, Andersson KG, Stahl S et al (2014) An engineered autotransporter-based surface expression vector enables efficient display of Affibody molecules on OmpT-negative E. coli as well as protease-mediated secretion in OmpT-positive strains. Microb Cell Fact 13:985

    Article  Google Scholar 

  56. Jose J, Zangen D (2005) Autodisplay of the protease inhibitor aprotinin in Escherichia coli. Biochem Biophys Res Commun 333:1218–1226

    Article  CAS  PubMed  Google Scholar 

  57. Yang TH, Pan JG, Seo YS et al (2004) Use of Pseudomonas putida EstA as an anchoring motif for display of a periplasmic enzyme on the surface of Escherichia coli. Appl Environ Microbiol 70:6968–6976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  59. Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91:10747–10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2:28–33

    Article  CAS  PubMed  Google Scholar 

  61. Reetz MT, Carballeira JD, Peyralans J et al (2006) Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. Chemistry 12:6031–6038

    Article  CAS  PubMed  Google Scholar 

  62. McCormick ML, Gaut JP, Lin TS et al (1998) Electron paramagnetic resonance detection of free tyrosyl radical generated by myeloperoxidase, lactoperoxidase, and horseradish peroxidase. J Biol Chem 273:32030–32037

    Article  CAS  PubMed  Google Scholar 

  63. Becker S, Michalczyk A, Wilhelm S et al (2007) Ultrahigh-throughput screening to identify E. coli cells expressing functionally active enzymes on their surface. Chembiochem 8:943–949

    Article  CAS  PubMed  Google Scholar 

  64. Adams TM, Wentzel A, Kolmar H (2005) Intimin-mediated export of passenger proteins requires maintenance of a translocation-competent conformation. J Bacteriol 187:522–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gustavsson M, Backlund E, Larsson G (2011) Optimisation of surface expression using the AIDA autotransporter. Microb Cell Fact 10:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Doerner A, Rhiel L, Zielonka S et al (2014) Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett 588:278–287

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Kolmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Jaeger, KE., Kolmar, H. (2015). Bacterial Secretion Systems for Use in Biotechnology: Autotransporter-Based Cell Surface Display and Ultrahigh-Throughput Screening of Large Protein Libraries. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_125

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_125

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53113-6

  • Online ISBN: 978-3-662-53115-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics