Skip to main content

Two-Phase Cultivation Techniques for Hydrocarbon-Degrading Microorganisms

  • Protocol
  • First Online:
Book cover Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

In the following chapter, we discuss the role of two-phase substrate transfer and partitioning for substrate bioavailability. We describe four different two-phase cultivation techniques, which aim at controlling growth-limiting substrate mass transfer rates (Protocols 1 and 2) and/or at decreasing the toxicity of substrates (Protocols 3 and 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wodzinski RS, Coyle JE (1974) Physical state of phenanthrene for utilization by bacteria. Appl Microbiol 27:1081–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol Biotechnol 18:97–105

    Article  CAS  Google Scholar 

  3. Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19:457–462

    Article  CAS  PubMed  Google Scholar 

  4. Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252

    Article  CAS  Google Scholar 

  5. Wick LY, Colangelo T, Harms H (2001) Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environ Sci Technol 35:354–361

    Article  CAS  PubMed  Google Scholar 

  6. Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. PNAS 99:15681–15686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 1st edn. Wiley, Hoboken

    Google Scholar 

  9. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245

    Article  CAS  PubMed  Google Scholar 

  10. Rijnaarts HHM, Bachmann A, Jumelet JC, Zehnder AJB (1990) Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of a-hexachlorocyclohexane in a contaminated calcareous soil. Environ Sci Technol 24:1349–1354

    Article  CAS  Google Scholar 

  11. Wick LY, deMunain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385

    Article  CAS  PubMed  Google Scholar 

  12. Hanzel J, Thullner M, Harms H, Wick LY (2011) Microbial growth with vapor-phase substrate. Environ Pollut 159:858–864

    Article  CAS  PubMed  Google Scholar 

  13. Hanzel J, Thullner M, Harms H, Wick LY (2012) Walking the tightrope of bioavailability: growth dynamics of PAH degraders on vapour-phase PAH. J Microbial Biotechnol 5:79–86

    Article  CAS  Google Scholar 

  14. Mayer P, Wernsing J, Tolls J, de Maagd PGJ, Sijm DTHM (1999) Establishing and controlling dissolved concentrations of hydrophobic organics by partitioning from a solid phase. Environ Sci Technol 33:2284–2290

    Article  CAS  Google Scholar 

  15. Smith KEC, Oostingh GJ, Mayer P (2010) Passive dosing for producing defined and constant exposure of hydrophobic organic compounds during in vitro toxicity tests. Chem Res Toxicol 23:55–65

    Article  CAS  PubMed  Google Scholar 

  16. Smith KE, Rein A, Trapp S, Mayer P, Karlson UG (2012) Dynamic passive dosing for studying the biotransformation of hydrophobic organic chemicals: microbial degradation as an example. Environ Sci Technol 46:4852–4860

    Article  CAS  PubMed  Google Scholar 

  17. Holliger C, Schraa G, Stams AJM, Zehnder AJB (1993) A highly purified bacterium couples growth to the reductive dechlorination of tetrachloroethene to cis-1,2-dichloroethene. Appl Environ Microbiol 59:2991–2997

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Holliger C, Schraa G, Stams AJM, Zehnder AJB (1992) Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Appl Environ Microbiol 58:1636–1644

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Reineke W, Knackmuss H-J (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47:395–402

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Spain JC, Nishino SF (1987) Degradation of 1,4-Dichlorobenzene by a Pseudomonas sp. Appl Envrion Microbiol 53:1010–1019

    CAS  Google Scholar 

  21. Haigler BE, Nishino SF, Spain JC (1988) Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 54:294–301

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dorn E, Hellwig M, Reineke W, Knackmuss H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70

    Article  PubMed  Google Scholar 

  23. van Uden N (1967) Transport-limited growth in the chemostat and its competitive Inhibition; a theoretical treatment. Arch Microbiol 58:145–154

    Google Scholar 

  24. Rusina TP, Smedes F, Klanova J, Booij K, Holoubek I (2007) Polymer selection for passive sampling: a comparison of critical properties. Chemosphere 68:1344–1351

    Article  CAS  PubMed  Google Scholar 

  25. Smith KEC, Dom N, Blust R, Mayer P (2010) Controlling and maintaining exposure of hydrophobic organic compounds in aquatic toxicity tests by passive dosing. Aquat Toxicol 98:15–24

    Article  CAS  PubMed  Google Scholar 

  26. ter Laak TL, Busser FJM, Hermens JLM (2008) Poly(dimethylsiloxane) as passive sampler material for hydrophobic chemicals: effect of chemical properties and sampler characteristics on partitioning and equilibration times. Anal Chem 80:3859–3866

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Y. Wick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Wick, L.Y., Otto, S., Holliger, C. (2015). Two-Phase Cultivation Techniques for Hydrocarbon-Degrading Microorganisms. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_124

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_124

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45178-6

  • Online ISBN: 978-3-662-45179-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics