Advertisement

Bioremediation of Sludge Obtained from Oil/Biofuel Storage Tanks

  • Esmaeil Shahsavari
  • Eric M. Adetutu
  • Andrew S. BallEmail author
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Crude oil refinery leads to the production of a considerable amount of oil tank bottom sludge which can contaminate the environment and is toxic to human and environmental health. Among the methods available for cleaning up sludge-contaminated environments is bioremediation, which is a widely acceptable method for the remediation of different hydrocarbon-contaminated soils. This method is based on using microbes, mainly bacteria and fungi to degrade or remove the contaminants. Bioremediation technology can be applied to soil contaminated with oil tank bottom sludge using natural attenuation, biostimulation (addition of nutrients to enhance indigenous microbial activities), and bioaugmentation (addition of hydrocarbon-degrading microorganisms to contaminated soils) or a combination of both biostimulation and bioaugmentation strategies. In addition to the type of the bioremediation methods applied, isolation and identification of microorganisms involved in the biodegradation process and the monitoring of their activities are important steps for any successful bioremediation project. In this chapter, simple and effective protocols are provided on how to isolate, screen, and identify hydrocarbon degrading-bacteria from oil sludge or sludge–soil complexes. In addition, two laboratory-scale methods for bioremediation of oil sludge and sludge-contaminated soil (microcosms and slurry phase) together with protocols for determining the concentration of hydrocarbon contaminants in soils are presented.

Keywords

Biodiesel Biolog MT2 plates Crude oil tank bottom sludge Hydrocarbon degradation Microcosms 

References

  1. 1.
    Shahsavari E, Adetutu EM, Anderson PA, Ball AS (2013) Plant residues—a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil. Sci Total Environ 443:766–774CrossRefPubMedGoogle Scholar
  2. 2.
    Ball A, Truskewycz A (2013) Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. Environ Sci Pollut Res 20:4311–4326CrossRefGoogle Scholar
  3. 3.
    Mansur A, Adetutu E, Kadali K, Morrison P, Nurulita Y, Ball A (2014) Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya. Environ Sci Pollut Res 21:10725–10735Google Scholar
  4. 4.
    Adetutu EM, Bird C, Kadali KK, Bueti A, Shahsavari E, Taha M, Patil S, Sheppard PJ, Makadia T, Simons KL, Ball AS (2014) Exploiting the intrinsic hydrocarbon-degrading microbial capacities in oil tank bottom sludge and waste soil for sludge bioremediation. Int J Environ Sci Technol 12:1427–1436Google Scholar
  5. 5.
    Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375CrossRefPubMedGoogle Scholar
  6. 6.
    Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89CrossRefPubMedGoogle Scholar
  7. 7.
    Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736CrossRefGoogle Scholar
  8. 8.
    Prince RC, Haitmanek C, Lee CC (2008) The primary aerobic biodegradation of biodiesel B20. Chemosphere 71:1446–1451CrossRefPubMedGoogle Scholar
  9. 9.
    Colla TS, Andreazza R, Bücker F, de Souza MM, Tramontini L, Prado GR, Frazzon APG, de Oliveira Camargo FA, Bento FM (2014) Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environ Sci Pollut Res 21:2592–2602CrossRefGoogle Scholar
  10. 10.
    Meyer DD, Beker SA, Bücker F, Peralba MdCR, Guedes Frazzon AP, Osti JF, Andreazza R, de Oliveira Camargo FA, Bento FM (2014) Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil. Int Biodeterior Biodegrad 95:356–363Google Scholar
  11. 11.
    Osborn AM, Moore ERB, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50CrossRefPubMedGoogle Scholar
  12. 12.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M (2008) Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Makadia TH, Adetutu EM, Simons KL, Jardine D, Sheppard PJ, Ball AS (2011) Re-use of remediated soils for the bioremediation of waste oil sludge. J Environ Manage 92:866–871CrossRefPubMedGoogle Scholar
  15. 15.
    Aleer S, Adetutu EM, Makadia TH, Patil S, Ball AS (2011) Harnessing the hydrocarbon-degrading potential of contaminated soils for the bioremediation of waste engine oil. Water Air Soil Pollut 218:121–130CrossRefGoogle Scholar
  16. 16.
    Kadali KK, Simons KL, Skuza PP, Moore RB, Ball AS (2012) A complementary approach to identifying and assessing the remediation potential of hydrocarbonoclastic bacteria. J Microbiol Methods 88:348–355CrossRefPubMedGoogle Scholar
  17. 17.
    Adetutu EM, Thorpe K, Shahsavari E, Bourne S, Cao X, Fard RMN, Kirby G, Ball AS (2012) Bacterial community survey of sediments at Naracoorte Caves, Australia. Int J Speleol 41:137–147CrossRefGoogle Scholar
  18. 18.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programmes. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rayment G, Higginson F (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press, MelbourneGoogle Scholar
  20. 20.
    National Committee on Soil and Terrain (2009) Australian soil and land survey field handbook. CSIRO, CollingwoodGoogle Scholar
  21. 21.
    Rowell DL (1994) Soil science: methods and applications. Prentice Hall/Pearson, HarlowGoogle Scholar
  22. 22.
    Fahy A, McKew B (2010) Microcosms. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg, pp 3523–3527CrossRefGoogle Scholar
  23. 23.
    Lors C, Damidot D, Ponge J-F, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17CrossRefPubMedGoogle Scholar
  24. 24.
    Aburto-Medina A, Adetutu E, Aleer S, Weber J, Patil S, Sheppard P, Ball A, Juhasz A (2012) Comparison of indigenous and exogenous microbial populations during slurry phase biodegradation of long-term hydrocarbon-contaminated soil. Biodegradation 23:813–822CrossRefPubMedGoogle Scholar
  25. 25.
    Saponaro S, Bonomo L, Petruzzelli G, Romele L, Barbafieri M (2002) Polycyclic aromatic hydrocarbons (PAHs) slurry phase bioremediation of a manufacturing gas plant (MGP) site aged soil. Water Air Soil Pollut 135:219–236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Esmaeil Shahsavari
    • 1
  • Eric M. Adetutu
    • 1
  • Andrew S. Ball
    • 1
    Email author
  1. 1.School of Applied SciencesRMIT UniversityBundooraAustralia

Personalised recommendations