Skip to main content

Single-Cell Biotechnology for Uncultured Microorganisms

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1032 Accesses

Abstract

Raman-activated cell sorting (RACS), which identifies and isolates cells according to their Raman spectra, would provide a powerful tool to explore uncultured bacteria in environment without cultivation. Single-cell Raman spectra (SCRS) are label-free, chemical profile of single cells, reflecting cell physiological states and metabolic activities. SCRS can be used as phenotypic signatures for individual cells. A combination of RACS and stable isotope probing (SIP) enables clearly distinguishing and separating of cells that perform relevant metabolic activities in environment. A strategy using controlled trap and release of single cell overcomes the problem of naturally weak Raman signals. This protocol provides the detailed description of RACS to isolate CO2-fixing photosynthetic cells in a microfluidic device. This protocol uses carotenoid-containing bacteria as an example for RACS; it can also be applied to other bacteria sorting by simply adjusting Raman acquisition time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schleifer KH (2004) Microbial diversity: facts, problems and prospects. Syst Appl Microbiol 27(1):3–9

    Article  Google Scholar 

  2. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583

    Article  CAS  Google Scholar 

  3. Paterson E et al (1997) Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Glob Chang Biol 3(4):363–377

    Article  Google Scholar 

  4. Huang WE et al (2009) Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization. Appl Environ Microbiol 75(1):234–241

    Article  CAS  Google Scholar 

  5. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    Article  CAS  Google Scholar 

  6. Venter JC (2003) Unleashing the power of genomics: understanding the environment and biological diversity. Scientist 17(23):8–8

    Google Scholar 

  7. Venter JC et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74

    Article  CAS  Google Scholar 

  8. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3(6):470–478

    Article  CAS  Google Scholar 

  9. Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS (2004) Raman microscopic analysis of single microbial cells. Anal Chem 76(15):4452–4458

    Article  CAS  Google Scholar 

  10. Harz A, Rosch P, Popp J (2009) Vibrational spectroscopy – a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 75A(2):104–113

    Google Scholar 

  11. Huang WE, Bailey MJ, Thompson IP, Whiteley AS, Spiers AJ (2007) Single-cell Raman spectral profiles of Pseudomonas fluorescens SBW25 reflects in vitro and in planta metabolic history. Microb Ecol 53(3):414–425

    Article  CAS  Google Scholar 

  12. Huang WE et al (2007) Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 9(8):1878–1889

    Article  CAS  Google Scholar 

  13. Huang WE, Ude S, Spiers AJ (2007) Pseudomonas fluorescens SBW25 biofilm and planktonic cells have differentiable Raman spectral profiles. Microb Ecol 53(3):471–474

    Article  CAS  Google Scholar 

  14. Huang WE, Li MQ, Jarvis RM, Goodacre R, Banwart SA (2010) Shining light on the microbial world: the application of Raman microspectroscopy. Adv Appl Microbiol 70:153–186

    Article  CAS  Google Scholar 

  15. Li M, Ashok PC, Dholakia K, Huang WE (2012) Raman-activated cell counting for profiling carbon dioxide fixing microorganisms. J Phys Chem A 116(25):6560–6563

    Article  CAS  Google Scholar 

  16. Zhang P et al (2015) Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal Chem 87(4):2282–2289

    Article  CAS  Google Scholar 

  17. Takaichi S (2008) Distribution and biosynthesis carotenoids. In: Hunter CN (ed) The purple phototrophic bacteria. Springer, Dordrecht, pp 97–117

    Google Scholar 

  18. Garcia-Asua G, Lang HP, Cogdell RJ, Hunter CN (1998) Carotenoid diversity: a modular role for the phytoene desaturase step. Trends Plant Sci 3(11):445–449

    Article  Google Scholar 

  19. DiCello F, Pepi M, Baldi F, Fani R (1997) Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus. Res Microbiol 148(3):237–249

    Article  CAS  Google Scholar 

  20. Krebs RA, Dunmire D, Partha R, Braiman MS (2003) Resonance Raman characterization of proteorhodopsin’s chromophore environment. J Phys Chem B 107(31):7877–7883

    Article  CAS  Google Scholar 

  21. Robert B (2009) Resonance Raman spectroscopy. Photosynth Res 101(2–3):147–155

    Article  CAS  Google Scholar 

  22. Li M et al (2012) Rapid resonance Raman micro-spectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J 6:875–885

    Article  CAS  Google Scholar 

  23. Wang Y et al (2013) Raman activated cell ejection for isolation of single cells. Anal Chem 85(22):10697–10701

    Article  CAS  Google Scholar 

  24. Berry D et al (2015) Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 112(2):E194–E203

    Article  CAS  Google Scholar 

  25. Ren L, Su X, Wang Y, Xu J, Ning K (2014) QSpec: online control and data analysis system for single-cell Raman spectroscopy. PeerJ 2:e436

    Article  Google Scholar 

  26. Zhang Q et al (2014) On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction. Lab Chip 14(24):4599–4603

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank NERC (NE/M002934/1) for the fund support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei E. Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Zhang, P., Song, Y., Thompson, I.P., Ma, B., Xu, J., Huang, W.E. (2015). Single-Cell Biotechnology for Uncultured Microorganisms. In: McGenity, T.J., Timmis, K.N., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_116

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_116

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49129-4

  • Online ISBN: 978-3-662-49131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics