Skip to main content

Knock-In-Leave-Behind (KILB): Genetic Grafting of Protease-Cleaving Sequences into Permissive Sites of Proteins with a Tn5-Based Transposition System

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Endowing proteins with proteolytic cleavage sites without affecting their native function when the cognate protease is not present is a challenging engineering effort for fundamental studies and biotechnological applications. Insertion of such short polypeptides often requires some knowledge of the target protein structure or identification of permissive sites that accept the genetic grafting without loss of function, e.g., by means of transposon-mediated linker-scanning mutagenesis. We describe a procedure to deliver in-frame polypeptides throughout the sequence of any target protein with a knock-in-leave-behind (KILB) transposon-based method. The mini-Tn5 synthetic transposable element reported here was tailored to randomly introduce recognition sites of the specific viral protease NIa into permissive locations of the target protein. Protein insertion variants can then be examined to detect phenotypic differences once cleaved in vivo by the cognate protease. Two application scenarios are discussed, i.e., proteolizable variants of the regulatory protein XylR of Pseudomonas putida and development of phenotypic mutants of metabolic functions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Billerbeck S, Calles B, Müller CL, de Lorenzo V, Panke S (2013) Towards functional orthogonalisation of protein complexes: individualisation of GroEL monomers leads to distinct quasihomogeneous single rings. ChemBioChem 14:2310–2321

    Article  CAS  PubMed  Google Scholar 

  2. Goff SP, Prasad VR (1991) Linker insertion mutagenesis as probe of structure-function relationships. Methods Enzymol 208:586–603

    Article  CAS  PubMed  Google Scholar 

  3. Hayes F, Hallet B (2000) Pentapeptide scanning mutagenesis: encouraging old proteins to execute unusual tricks. Trends Microbiol 8:571–577

    Article  CAS  PubMed  Google Scholar 

  4. Manoil C, Traxler B (2000) Insertion of in-frame sequence tags into proteins using transposons. Methods 20:55–61

    Article  CAS  PubMed  Google Scholar 

  5. Traxler B, Gachelet E (2007) Sets of transposon‐generated sequence‐tagged mutants for structure–function analysis and engineering. Methods Enzymol 421:83–90

    Article  CAS  PubMed  Google Scholar 

  6. García JA, Riechmann J, Lain S (1989) Proteolytic activity of the plum pox potyvirus Nla-like protein in Escherichia coli. Virology 170:362–369

    Article  PubMed  Google Scholar 

  7. Goryshin IY, Miller JA, Kil YV, Lanzov VA, Reznikoff WS (1998) Tn5/IS50 target recognition. Proc Natl Acad Sci U S A 95:10716–10721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reznikoff WS (2008) Transposon Tn5. Annu Rev Genet 42:269–286

    Article  CAS  PubMed  Google Scholar 

  9. Miller WG, Lindow SE (1997) An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191:149–153

    Article  CAS  PubMed  Google Scholar 

  10. Martínez-García E, Calles B, Arevalo-Rodriguez M, de Lorenzo V (2011) pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol 11:38–50

    Article  PubMed  PubMed Central  Google Scholar 

  11. Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de las Heras A, Páez-Espino AD, Durante-Rodríguez G, Kim J, Nikel PI, Platero R, de Lorenzo V (2012) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675

    Article  PubMed  PubMed Central  Google Scholar 

  12. García JA, Riechmann JL, Laín S (1989) Artificial cleavage site recognized by plum pox potyvirus protease in Escherichia coli. J Virol 63:2457–2460

    PubMed  PubMed Central  Google Scholar 

  13. Laín S, Riechmann J, García JA (1989) The complete nucleotide sequence of plum pox potyvirus RNA. Virus Res 13:157–172

    Article  PubMed  Google Scholar 

  14. de Lorenzo V, Herrero M, Metzke M, Timmis KN (1991) An upstream XylR- and IHF-induced nucleoprotein complex regulates the sigma 54-dependent Pu promoter of TOL plasmid. EMBO J 10:1159–1167

    PubMed  PubMed Central  Google Scholar 

  15. Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Article  CAS  PubMed  Google Scholar 

  16. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  17. Calles B, de Lorenzo V (2013) Expanding the boolean logic of the prokaryotic transcription factor XylR by functionalization of permissive sites with a protease-target sequence. ACS Synth Biol 2:594–603

    Article  CAS  PubMed  Google Scholar 

  18. Bhasin A, Goryshin IY, Reznikoff WS (1999) Hairpin formation in Tn5 transposition. J Biol Chem 274:37021–37029

    Article  CAS  PubMed  Google Scholar 

  19. Goryshin IY, Reznikoff WS (1998) Tn5 in vitro transposition. J Biol Chem 273:7367–7374

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CAMBIOS Program of the Spanish Ministry of Economy and Competitiveness; the ST-FLOW, ARISYS, EVOPROG, and EMPOWERPUTIDA contracts of the EU; the ERANET-IB; and the PROMT Project of the CAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor de Lorenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Calles, B., de Lorenzo, V. (2015). Knock-In-Leave-Behind (KILB): Genetic Grafting of Protease-Cleaving Sequences into Permissive Sites of Proteins with a Tn5-Based Transposition System. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_114

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_114

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50433-8

  • Online ISBN: 978-3-662-50435-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics