Protocols for the Measurement of Bacterial Chemotaxis to Hydrocarbons

  • Jayna L. Ditty
  • Rebecca E. ParalesEmail author
Part of the Springer Protocols Handbooks book series (SPH)


Bacterial chemotaxis is the process by which bacteria sense and respond to environmental stimuli. While the mechanism for chemotaxis has been extensively studied in enteric bacteria, studies in soil bacteria that are attracted to aromatic acids and aromatic hydrocarbons in addition to sugars and amino acids are lacking. Here we describe detailed protocols for the quantitative and qualitative assessment of chemotaxis responses to analyze responses to hydrocarbon and aromatic acid attractants to identify the specific receptors involved.


Aromatic hydrocarbons Attractant Chemotaxis Energy taxis Methyl-accepting chemotaxis protein 



We thank Rita Luu, Jonathan Hughes, Benjamin Schneider, Janet Rollefson, and undergraduate students that participated in the BIOL464 Bioinformatics course at the University of St. Thomas for providing data and figures and Rita Luu for critically reading the manuscript. Chemotaxis studies were supported by a grant from the National Science Foundation to REP and JLD (MCB0919930). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.


  1. 1.
    Armitage JP (1999) Bacterial tactic responses. Adv Microbial Phys 41:229–289Google Scholar
  2. 2.
    Bourret RB, Stock AM (2002) Molecular information processing: lessons from bacterial chemotaxis. J Biol Chem 277:9625–9628CrossRefPubMedGoogle Scholar
  3. 3.
    Manson MD (1992) Bacterial motility and chemotaxis. Adv Microbial Phys 33:277–346Google Scholar
  4. 4.
    Manson MD, Armitage JP, Hoch JA, Macnab RM (1998) Bacterial locomotion and signal transduction. J Bacteriol 180:1009–1022PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bourret RB, Borkovich KA, Simon MI (1991) Signal transduction pathways involving protein phosphorylation in prokaryotes. Ann Rev Biochem 60:401–441CrossRefPubMedGoogle Scholar
  6. 6.
    Armitage JP, Schmitt R (1997) Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti – variations on a theme? Microbiology 143:3671–3682CrossRefPubMedGoogle Scholar
  7. 7.
    Zhulin IB (2001) The superfamily of chemotaxis transducers: From physiology to genomics and back. Adv Microbial Physiol 45:157–198CrossRefGoogle Scholar
  8. 8.
    Parales RE, Ferrandez A, Harwood CS (2004) Chemotaxis in Pseudomonads. In: Ramos J-L (ed) Pseudomonas Volume I: Genomics, life style and molecular architecture. Kluwer Academic/Plenum, New York, pp 793–815CrossRefGoogle Scholar
  9. 9.
    Gibson DT, Koch JR, Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms I. Enzymatic formation of catechol from benzene. Biochemistry 7:2653–2661CrossRefPubMedGoogle Scholar
  10. 10.
    Parales RE, Luu RA, Chen GY et al (2013) Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. Microbiology 159:1086–1096CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gordillo F, Chávez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol 60:322–328CrossRefPubMedGoogle Scholar
  12. 12.
    Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63:4111–4115PubMedPubMedCentralGoogle Scholar
  13. 13.
    Harwood CS, Fosnaugh K, Dispensa M (1989) Flagellation of Pseudomonas putida and analysis of its motile behavior. J Bacteriol 171:4063–4066CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Harwood CS, Parales RE, Dispensa M (1990) Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl Environ Microbiol 56:1501–1503PubMedPubMedCentralGoogle Scholar
  15. 15.
    Harwood CS, Rivelli M, Ornston LN (1984) Aromatic acids are chemoattractants for Pseudomonas putida. J Bacteriol 160:622–628PubMedPubMedCentralGoogle Scholar
  16. 16.
    Iwaki H, Muraki T, Ishihara S et al (2007) Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol 189:3502–3514CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lacal J, Muñoz-Martínez F, Reyes-Darías JA et al (2011) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13:1733–1744CrossRefPubMedGoogle Scholar
  18. 18.
    Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7, e35498CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nogales J, Canales A, Jiménez-Barbero J et al (2011) Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Mol Microbiol 79:359–374CrossRefPubMedGoogle Scholar
  20. 20.
    Parales RE (2004) Nitrobenzoates and aminobenzoates are chemoattractants for Pseudomonas strains. Appl Environ Microbiol 70:285–292CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic to the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lacal J, Reyes-Darias JA, Garcia-Fontana C, Ramos JL, Krell T (2013) Tactic responses to pollutants and their potential to increase biodegradation efficiency. J Appl Microbiol 114:923–933CrossRefPubMedGoogle Scholar
  23. 23.
    Law AM, Aitken MD (2003) Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol 69:5968–5973CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Long T, Ford RM (2009) Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor. Environ Sci Technol 43:1546–1552CrossRefPubMedGoogle Scholar
  25. 25.
    Marx RB, Aitken MD (2000) Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol 34:3379–3383CrossRefGoogle Scholar
  26. 26.
    Paul D, Singh R, Jain RK (2006) Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil. Environ Microbiol 8:1797–1804CrossRefPubMedGoogle Scholar
  27. 27.
    Alexandre G, Greer-Phillips S, Zhulin IB (2004) Ecological role of energy taxis in microorganisms. FEMS Microbiol Rev 28:113–126CrossRefPubMedGoogle Scholar
  28. 28.
    Alexandre G, Zhulin IB (2001) More than one way to sense chemicals. J Bacteriol 183:4681–4686CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Taylor BL (2007) Aer on the inside looking out: paradigm for a PAS-HAMP role in sensing oxygen, redox and energy. Mol Microbiol 65:1415–1424CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Taylor BL, Watts KJ, Johnson MS (2007) Oxygen and redox sensing by two-component systems that regulate behavioral responses: behavioral assays and structural studies of aer using in vivo disulfide cross-linking. Methods Enzymol 422:190–232CrossRefPubMedGoogle Scholar
  31. 31.
    Luu RA, Schneider BJ, Ho CC et al (2013) Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2. Appl Environ Microbiol 79:2416–2423CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sarand I, Osterberg S, Holmqvist S et al (2008) Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ Microbiol 10:1320–1334CrossRefPubMedGoogle Scholar
  33. 33.
    Rabinovitch-Deere CA, Parales RE (2012) Three types of taxis used in the response of Acidovorax sp. strain JS42 to 2-nitrotoluene. Appl Environ Microbiol 78:2308–2315Google Scholar
  34. 34.
    Kojadinovic M, Sirinelli A, Wadhams GH, Armitage JP (2011) New motion analysis system for characterization of the chemosensory response kinetics of Rhodobacter sphaeroides under different growth conditions. Appl Environ Microbiol 77:4082–4088CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lopez de Victoria G, Zimmer-Faust RK, Lovell CR (1995) Computer-assisted video motion analysis: a powerful technique for investigating motility and chemotaxis. J Microbiol Methods 23:329–341CrossRefGoogle Scholar
  36. 36.
    Kojadinovic M, Armitage JP, Tindall MJ, Wadhams GH (2013) Response kinetics in the complex chemotaxis signalling pathway of Rhodobacter sphaeroides. J R Soc Interface 10:20121001CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Qian C, Wong CC, Swarup S, Chiam KH (2013) Bacterial tethering analysis reveals a "run-reverse-turn" mechanism for Pseudomonas species motility. Appl Environ Microbiol 79:4734–4743CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Englert DL, Jayaraman A, Manson MD (2009) Microfluidic techniques for the analysis of bacterial chemotaxis. Methods Mol Biol 571:1–23CrossRefPubMedGoogle Scholar
  39. 39.
    Englert DL, Manson MD, Jayaraman A (2009) Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl Environ Microbiol 75:4557–4564CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kalinin Y, Neumann S, Sourjik V, Wu M (2010) Responses of Escherichia coli bacteria to two opposing chemoattractant gradients depend on the chemoreceptor ratio. J Bacteriol 192:1796–1800CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rusconi R, Garren M, Stocker R (2014) Microfluidics expanding the frontiers of microbial ecology. Ann Rev Biophys 43:65–91CrossRefGoogle Scholar
  42. 42.
    Sourjik V, Vaknin A, Shimizu TS, Berg HC (2007) In vivo measurement by FRET of pathway activity in bacterial chemotaxis. Methods Enzymol 423:365–391CrossRefPubMedGoogle Scholar
  43. 43.
    Krell T, Lacal J, Garcia-Fontana C et al (2014) Characterization of molecular interactions using isothermal titration calorimetry. Methods Mol Biol 1149:193–203CrossRefPubMedGoogle Scholar
  44. 44.
    Wu JG, Li JY, Li GY, Long DG, Weis RM (1996) The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation. Biochemistry 35:4984–4993CrossRefPubMedGoogle Scholar
  45. 45.
    Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271CrossRefPubMedGoogle Scholar
  46. 46.
    Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DCGoogle Scholar
  47. 47.
    Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  48. 48.
    Adler J (1966) Chemotaxis in bacteria. Science 153:708–716CrossRefPubMedGoogle Scholar
  49. 49.
    Ditty JL, Grimm AC, Harwood CS (1998) Identification of a chemotaxis gene region from Pseudomonas putida. FEMS Microbiol Lett 159:267–273CrossRefPubMedGoogle Scholar
  50. 50.
    Harwood CS, Nichols NN, Kim M-K, Ditty JL, Parales RE (1994) Identification of the pcaRKF gene cluster from Pseudomonas putida: Involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176:6479–6488CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yu HS, Alam M (1997) An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol Lett 156:265–269CrossRefPubMedGoogle Scholar
  52. 52.
    Parkinson JS (2007) A "bucket of light" for viewing bacterial colonies in soft agar. Methods Enzymol 423:432–435CrossRefPubMedGoogle Scholar
  53. 53.
    Tso W-W, Adler J (1974) Negative chemotaxis in Escherichia coli. J Bacteriol 118:560–576PubMedPubMedCentralGoogle Scholar
  54. 54.
    Storch KF, Rudolph J, Oesterhelt D (1999) Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum. EMBO J 18:1146–1158CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Li J, Go AC, Ward MJ, Ottemann KM (2010) The chemical-in-plug bacterial chemotaxis assay is prone to false positive responses. BMC Res Notes 3:77CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pham HT, Parkinson JS (2011) Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism. J Bacteriol 193:6597–6604CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91CrossRefPubMedGoogle Scholar
  58. 58.
    Mesibov R, Adler J (1972) Chemotaxis toward amino acids in Escherichia coli. J Bacteriol 112:315–326PubMedPubMedCentralGoogle Scholar
  59. 59.
    Liu X, Parales RE (2009) Bacterial chemotaxis to atrazine and related s-triazines. Appl Environ Microbiol 75:5481–5488CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Liu X, Wood PL, Parales JV, Parales RE (2009) Chemotaxis to pyrimidines and identification of a cytosine chemoreceptor in Pseudomonas putida. J Bacteriol 191:2909–2916CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Moulton RC, Montie TC (1979) Chemotaxis by Pseudomonas aeruginosa. J Bacteriol 137:274–280PubMedPubMedCentralGoogle Scholar
  62. 62.
    Bainer R, Park H, Cluzel P (2003) A high-throughput capillary assay for bacterial chemotaxis. J Microbiol Methods 55:315–319CrossRefPubMedGoogle Scholar
  63. 63.
    Meyer G, Schneider-Merck T, Böhme S, Sand W (2002) A simple method for investigations on the chemotaxis of Acidithiobacillus ferrooxidans and Desulfovibrio vulgaris. Acta Biotechnol 22:391–399CrossRefGoogle Scholar
  64. 64.
    Kato J, Ito A, Nikata T, Ohtake H (1992) Phosphate taxis in Pseudomonas aeruginosa. J Bacteriol 174:5149–5151CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nikata T, Sumida K, Kato J, Ohtake H (1992) Rapid method for analyzing bacteria behavioral responses to chemical stimuli. Appl Environ Microbiol 58:2250–2254PubMedPubMedCentralGoogle Scholar
  66. 66.
    Liu X, Parales RE (2008) Chemotaxis of Escherichia coli to pyrimidines: a new role for the signal transducer Tap. J Bacteriol 190:972–979CrossRefPubMedGoogle Scholar
  67. 67.
    Moench TT, Konetzka WA (1978) Chemotaxis in Pseudomonas aeruginosa. J Bacteriol 133:427–429PubMedPubMedCentralGoogle Scholar
  68. 68.
    Tkaczyk TS (2010) Field guide to microscopy. SPIE Field Guides. SPIE Press, Bellingham, pp 1–156Google Scholar
  69. 69.
    Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Alvarez-Ortega C, Harwood CS (2007) Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant. Appl Environ Microbiol 73:7793–7795CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Luu RA, Koostra C, Brunton V et al (2015) Integration of chemotaxis, transport, and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 96:134–147CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of BiologyUniversity of St. ThomasSt. PaulUSA
  2. 2.Department of Microbiology and Molecular GeneticsThe University of CaliforniaDavisUSA

Personalised recommendations