Skip to main content

In Vitro High-Pressure Incubation and Activity Measurement of Deep-Sea Methanogenic Archaea

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

A high-pressure cultivation or incubation system can reproduce elevated in situ pressure conditions of deep-sea environments in a laboratory. It has significantly contributed to the piezophysiological studies of microorganisms, especially psychrophilic heterotrophs, since the first report of high-pressure incubation of deep-sea microorganisms many decades ago. The deep-sea microorganisms growing on gaseous substrates such as H2, CH4, N2, and CO2 play important roles in biogeochemical cycles around gas-rich deep-sea environments such as deep-sea hydrothermal vent habitats. However, due to the difficulties in obtaining pressure-proof gastight high-pressure cultivation systems for increased gaseous substrates and the tricky way of their operations, only a few gas-utilizing microorganisms have been investigated under high-pressure conditions so far. Here, we describe the protocols for high-pressure microbiological experiments with easy handling systems that enable the high-pressure cultivation of hyperthermophilic hydrogenotrophic methanogens and the following highly sensitive measurement of methanogenesis activity in the deep-sea sediments using radiolabeled tracers under high-pressure conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381

    Article  CAS  PubMed  Google Scholar 

  2. Meersman F, Daniel I, Bartlett DH, Winter R, Hazael R, McMillan PF (2013) High-pressure biochemistry and biophysics. Rev Mineral Geochem 75:607–648

    Article  CAS  Google Scholar 

  3. ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189

    CAS  PubMed  PubMed Central  Google Scholar 

  4. ZoBell CE, Oppenheimer CH (1950) Some effects of hydrostatic pressure on the multiplication and morphology of marine bacteria. J Bacteriol 60:771–781

    CAS  PubMed  PubMed Central  Google Scholar 

  5. ZoBell CE, Morita RY (1957) Barophilic bacteria in some deep sea sediments. J Bacteriol 73:563–568

    CAS  PubMed  PubMed Central  Google Scholar 

  6. ZoBell CE, Cobet AB (1964) Filament formation by Escherichia coli at increased hydrostatic pressures. J Bacteriol 87:710–719

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Paul KL, Morita RY (1971) Effects of hydrostatic pressure and temperature on the uptake and respiration of amino acids by a facultatively psychrophilic marine bacterium. J Bacteriol 108:835–843

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tabor PS, Deming JW, Ohwada K, Colwell RR (1982) Activity and growth of microbial populations in pressurized deep-sea sediment and animal gut samples. Appl Environ Microbiol 44:413–422

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res 24:857–863

    Article  Google Scholar 

  10. Miller JF, Shah NN, Nelcon CM, Ludlow JM, Clark DS (1988) Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii. Appl Environ Microbiol 54:3039–3042

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernhardt G, Jaenicke R, Lüdemann HD, König H, Stetter KO (1988) High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Appl Environ Microbiol 54:1258–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nelson CM, Schuppenhauer MR, Clark DS (1991) Effects of hyperbaric pressure on a deep-sea archaebacterium in stainless steel and glass-lined vessels. Appl Environ Microbiol 57:3576–3580

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nelson CM, Schuppenhauer MR, Clark DS (1992) High-pressure, high-temperature bioreactor for comparing effects of hyperbaric and hydrostatic pressure on bacterial growth. Appl Environ Microbiol 58:1789–1793

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Park CB, Clark DS (2002) Rupture of the cell envelope by decompression of the deep-sea methanogen Methanococcus jannaschii. Appl Environ Microbiol 68:1458–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parks RJ, Sass H, Webster G, Watkins AJ, Weightman AJ, O’Sullivan LA, Cragg BA (2010) Methods for studying methanogens and methanogenesis in marine sediments. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, experimental protocols and appendices, vol 5. Springer-Verlag, Heiderberg, pp 3799–3826

    Google Scholar 

  16. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A (2009) Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol 11:1983–1997

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Tasumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Tasumi, E., Yanagawa, K., Miyazaki, J., Takai, K. (2015). In Vitro High-Pressure Incubation and Activity Measurement of Deep-Sea Methanogenic Archaea. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_111

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_111

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53107-5

  • Online ISBN: 978-3-662-53108-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics