Skip to main content

Analysis of PHB Metabolism Applying Tn5 Mutagenesis in Ralstonia eutropha

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

Transposon mutagenesis presents a powerful and practicable method to generate single-gene disruption mutants of microorganisms. As naturally occurring transposons “jump” within the genome, molecular biology uses plasmid-bound transposons, which randomly disrupt genomic regions of the target organism. Obtained transposon mutants help to elucidate metabolic pathways and to identify essential genes, which are involved in syntheses or degradation of compounds or are important for other cell processes or cell structures. The best-known transposon, Tn5, codes for different antibiotic resistances as well as for a transposase mediating transposition and a transposase inhibitor protein. A notable example of applied Tn5 mutagenesis is the identification and localization of genes, which are involved in the synthesis of the industrially relevant biopolymer poly(3-hydroxybutyrate) (PHB) in Ralstonia eutropha H16. PHB is synthesized in a three-step pathway, and the key genes of R. eutropha were found to be organized as a single operon. In this chapter, the generation and analysis of Tn5-induced mutants of R. eutropha is described. This procedure starts with the transfer of the Tn5-harboring plasmid pSUP5011 into R. eutropha by conjugation, is followed by the screening of mutants defective in PHB accumulation, and is then completed by identifying genes, which have been disrupted by Tn5 by sequence analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowien B, Schlegel HG (1981) Physiology and biochemistry of aerobic hydrogen oxidizing bacteria. Annu Rev Microbiol 35:405–452

    Article  CAS  PubMed  Google Scholar 

  2. Wilde E (1962) Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomas eutropha. Arch Mikrobiol 43:109–137

    Article  CAS  Google Scholar 

  3. Anderson AJ, Dawes AE (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Oeding V, Schlegel HG (1973) β-Ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-β-hydroxybutyrate metabolism. Biochem J 134:239–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) The role of NADH- and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:259–264

    Article  CAS  Google Scholar 

  6. Schubert PA, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyrate. J Bacteriol 170:5837–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peoples OP, Sinskey AJ (1989) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 263:15293–15297

    Google Scholar 

  8. Peoples OP, Sinskey AJ (1989) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264:15298–15303

    CAS  PubMed  Google Scholar 

  9. Slater T, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lindenkamp N, Peplinski K, Volodina E, Ehrenreich A, Steinbüchel A (2010) Impact of multiple β-ketothiolase deletion mutations in Ralstonia eutropha H16 on the composition of 3-mercaptopropionic acid-containing copolymers. Appl Environ Microbiol 76:5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwarz E, Strittmatter A, Voss I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 10:1257–1262

    Article  Google Scholar 

  12. Peplinski K, Ehrenreich A, Döring C, Bömeke M, Reinecke F, Hutmacher C, Steinbüchel A (2010) Genome-wide transcriptome analyses of the “Knallgas” bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiology (SGM) 156:2136–2152

    Article  CAS  Google Scholar 

  13. Genilloud O, Garrido MC, Moreno F (1984) The transposon Tn5 carries a neomycin-resistance determinant. Gene 32:225–233

    Article  CAS  PubMed  Google Scholar 

  14. Lowe JB, Berg DE (1983) A product of the Tn5 transposase gene inhibits transposition. Genetics 103:603–615

    Google Scholar 

  15. Berg DE, Johnsrud L, McDivitt L, Ramabhadran R, Hirschel BJ (1982) Inverted repeats of Tn5 are transposable elements. Genetics 79:2632–2635

    CAS  Google Scholar 

  16. Pilhofer M, Bauer AP, Schrallhammer M, Richter L, Ludwig W, Schleifer KH, Petroni G (2007) Characterization of bacterial operons consisting of two tubulins and a kinesin-linke gene by the novel two-step gene walking method. Nucleic Acids Res 35, e135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) “Gapped BLAST and PSI-BLAST”: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schürmann M, Wübbeler JH, Grote J, Steinüchel A (2011) Novel Reaction of succinyl coenzyme A (Succinyl-CoA) synthetase: Activation of 3-sulfinopropionate to 3-sulfinopropionyl-CoA in Advenella mimigardefordensis strain DPN7T during degradation of 3,3′-dithiodipropionic acid. J Bacteriol 193:3078–3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deng Y, Nagachar N, Xiao C, Tien M, Kao TH (2013) Identification and characterization of non-cellulose-producing mutants of Gluconobacter hansenii generated by Tn5 transposon mutagenesis. J Bacteriol 195:5072–5083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brandt U, Raberg M, Voigt B, Hecker M, Steinbüchel A (2012) Elevated poly(3-hydroxybutyrate) synthesis in mutants of Ralstonia eutropha H16 defective in lipopolysaccharide biosynthesis. Appl Microbiol Biotechnol 95:471–483

    Article  CAS  PubMed  Google Scholar 

  21. Simon R (1984) High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420

    Article  CAS  PubMed  Google Scholar 

  22. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791

    Article  CAS  Google Scholar 

  23. Friedrich B, Hogrefe C, Schlegel HG (1981) Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147:198–205

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Steinbüchel A, Oppermann-Sanio FB, Ewering C, Pötter M (2013) Mikrobiologisches Praktikum. Springer Verlag, Berlin

    Book  Google Scholar 

  25. Srivastava S, Urban M, Friedrich B (1982) Mutagenesis of Alcaligenes eutrophus by insertion of the drug-resistance transposon Tn5. Arch Microbiol 131:203–207

    Article  CAS  PubMed  Google Scholar 

  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  27. Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Raberg, M., Heinrich, D., Steinbüchel, A. (2015). Analysis of PHB Metabolism Applying Tn5 Mutagenesis in Ralstonia eutropha . In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_110

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_110

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49138-6

  • Online ISBN: 978-3-662-49140-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics