Skip to main content

Protocols for Calculating Reaction Kinetics and Thermodynamics

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Thermodynamics is central to our understanding of the ecology and physiology of microbial ecosystems. In physiological research, thermodynamics is used to determine the directionality of a reaction or the feasibility of a pathway. In ecological research, thermodynamics is used to determine the feasibility of a process and to rationalize the sequence of redox reactions in both natural environments and engineered biological systems and increasingly also as a basis to describe microbial activities as a function of environmental factors. This protocol provides a detailed annotated description of how to calculate change in Gibbs free energy values and redox potentials and a brief discussion on linking thermodynamics and kinetics for reactions of biological interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zehnder AJB, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley-Interscience, New York, pp 1–38

    Google Scholar 

  2. Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  3. Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    Article  CAS  PubMed  Google Scholar 

  4. Stams AJM, de Bok FAM, Plugge CM, van Eekert MHA, Dolfing J, Schraa G (2006) Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8:371–382

    Article  CAS  PubMed  Google Scholar 

  5. Dolfing J (2014) Syntrophy in microbial fuel cells. ISME J 8:4–5

    Article  CAS  PubMed  Google Scholar 

  6. LaRowe DE, Dale AW, Amend JP, Van Cappellen P (2012) Thermodynamic limitations on microbially catalyzed reaction rates. Geochim Cosmochim Acta 90:96–109

    Article  CAS  Google Scholar 

  7. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  8. Dolfing J (1988) Acetogenesis. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley-Interscience, New York, pp 417–468

    Google Scholar 

  9. Dolfing J (2003) Thermodynamic considerations for dehalogenation. In: Häggblom MM, Bossert ID (eds) Dehalogenation: microbial processes and environmental applications. Kluwer, Boston, pp 89–114

    Google Scholar 

  10. Hanselmann KW (1991) Microbial energetics applied to waste repositories. Experientia 47:645–687

    Article  CAS  Google Scholar 

  11. Speight JG (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  12. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 25:175–243

    Article  CAS  PubMed  Google Scholar 

  14. Dolfing J, Janssen DB (1994) Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds. Biodegradation 5:21–28

    CAS  Google Scholar 

  15. Dolfing J, Novak I (2015) The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments. Biodegradation 26:15–27

    Article  CAS  PubMed  Google Scholar 

  16. Helgeson HC, Owens CE, Knox AM, Richard L (1998) Calculation of the standard molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temperatures and pressures. Geochim Cosmochim Acta 62:985–1081

    Article  CAS  Google Scholar 

  17. Richard L, Helgeson HC (1998) Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest. Geochim Cosmochim Acta 62:3591–3636

    Article  CAS  Google Scholar 

  18. Amend JP, Helgeson HC (1997) Group additivity equations of state for calculating the standard molal thermodynamic properties of aqueous organic species at elevated temperatures and pressures. Geochim Cosmochim Acta 61:11–46

    Article  CAS  Google Scholar 

  19. Richard L (2001) Calculation of the standard molal thermodynamic properties as a function of temperature and pressure of some geochemically important organic sulfur compounds. Geochim Cosmochim Acta 65:3827–3877

    Article  CAS  Google Scholar 

  20. Holmes DA, Harrison BK, Dolfing J (1993) Estimation of Gibbs free energy of formation for chlorinated biphenyls. Environ Sci Technol 27:725–731

    Article  CAS  Google Scholar 

  21. Huang C-L, Harrison BK, Madura J, Dolfing J (1996) Gibbs free energy of formation of PCDDs: evaluation of estimation methods and application for predicting dehalogenation pathways. Environ Toxicol Chem 15:824–836

    Article  CAS  Google Scholar 

  22. Dolfing J, Novak I, Archelas A, Macarie H (2012) Gibbs free energy of formation of chlordecone and potential degradation products: implications for remediation strategies and environmental fate. Environ Sci Technol 46:8131–8139

    Article  CAS  PubMed  Google Scholar 

  23. Dolfing J, Xu A, Gray ND, Larter SR, Head IM (2009) The thermodynamic landscape of methanogenic PAH degradation. Microb Biotechnol 2:66–574

    Article  Google Scholar 

  24. Dick JM, Evans KA, Holman AI, Jaraula CMB, Grice K (2013) Estimation and application of the thermodynamic properties of aqueous phenanthrene and isomers of methylphenanthrene at high temperature. Geochim Cosmochim Acta 122:247–266

    Article  CAS  Google Scholar 

  25. Kleerebezem R, Stams AJM (2000) Kinetics of syntrophic cultures: a theoretical treatise on butyrate fermentation. Biotechnol Bioeng 67:529–543

    Article  CAS  PubMed  Google Scholar 

  26. Jin Q, Bethke CM (2005) Predicting the rate of microbial respiration in geochemical environments. Geochim Cosmochim Acta 69:1133–1143

    Article  CAS  Google Scholar 

  27. Jin Q, Bethke CM (2007) The thermodynamics and kinetics of microbial metabolism. Am J Sci 307:643–677

    Article  CAS  Google Scholar 

  28. Rodríguez J, Lema JM, Kleerebezem R (2008) Energy-based models for environmental biotechnology. Trends Biotechnol 26:366–374

    Article  PubMed  Google Scholar 

  29. Hoh CY, Cord-Ruwisch R (1996) A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant. Biotechnol Bioeng 51:597–604

    Article  CAS  PubMed  Google Scholar 

  30. Fennell DE, Gossett JM (1998) Modeling the production and competition for hydrogen in a dechlorinating culture. Environ Sci Technol 32:2450–2460

    Article  CAS  Google Scholar 

  31. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mayumi D, Dolfing J, Sakata S, Maeda H, Miyagawa Y, Ikarashi M, Tamaki H, Takeuchi M, Nakatsu CH, Kamagata Y (2013) Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs. Nat Commun 4:1998. doi:10.1038/ncomms2998

    Article  PubMed  PubMed Central  Google Scholar 

  33. Flamholz A, Noor E, Bar-Even A, Milo R (2012) eQuilibrator – the biochemical thermodynamics calculator. Nucleic Acids Res 40(Database issue):D770–D775. doi:10.1093/nar/gkr874

    Article  CAS  PubMed  Google Scholar 

  34. Noor E, Bar-Even A, Flamholz A, Lubling Y, Davidi D, Milo R (2012) An integrated open framework for thermodynamics of reactions that combines accuracy and coverage. Bioinformatics 28:2037–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vojinović V, von Stockar U (2009) Influence of uncertainties in pH, pMg, activity coefficients, metabolite concentrations, and other factors on the analysis of the thermodynamic feasibility of metabolic pathways. Biotechnol Bioeng 103:780–795

    Article  PubMed  Google Scholar 

  36. Rother K, Hoffmann S, Bulik S, Hoppe A, Gasteiger J, Holzhütter H-G (2010) IGERS: inferring Gibbs energy changes of biochemical reactions from reaction similarities. Biophys J 98:2478–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Noor E, Haraldsdóttir HS, Milo R, Fleming RMT (2013) Consistent estimation of Gibbs energy using component contributions. PLoS Comput Biol 9:e1003098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R (2014) Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput Biol 10, e1003483

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dolfing J, Harrison BK (1992) The Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments. Environ Sci Technol 26:2213–2218

    Article  CAS  Google Scholar 

  40. Mavrovouniotis ML (1990) Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36:1070–1082

    Article  CAS  PubMed  Google Scholar 

  41. Mavrovouniotis ML (1991) Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266:14440–14445

    CAS  PubMed  Google Scholar 

  42. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95:1487–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dolfing J, Larter SR, Head IM (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2:442–452

    Article  CAS  PubMed  Google Scholar 

  44. Dolfing J (2013) Syntrophic propionate oxidation via butyrate: a novel window of opportunity under methanogenic conditions. Appl Environ Microbiol 79:4515–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dolfing J (2014) Thermodynamic constraints on syntrophic acetate oxidation. Appl Environ Microbiol 80:15239–15241

    Article  Google Scholar 

  46. Dolfing J, Xu A, Head IM (2010) Anomalous energy yields in thermodynamic calculations: importance of accounting for pH dependent organic acid speciation. ISME J 4:463–464

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Dolfing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Dolfing, J. (2015). Protocols for Calculating Reaction Kinetics and Thermodynamics. In: McGenity, T., Timmis, K., Nogales Fernández, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_109

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_109

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49309-0

  • Online ISBN: 978-3-662-49310-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics