Advertisement

Fluorescence Microscopy for Microbiology

  • Gabriella MolinariEmail author
Protocol
  • 536 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Fluorescence microscopy allows selective recognition of a particular component from biomolecular complex structures for the investigation of biological processes. It is frequently used to image specific microbial features. The rapid development of new fluorescent probes that can be easily adapted for a wide array of biological applications, coupled to the extraordinary technical improvements in microscope systems and software, strongly supports the sustained development and exploitation of fluorescence microscopy as a powerful research tool.

Fluorescence microscopy in microbiology can investigate the localization and levels of molecules and can provide information about their distribution, dynamics, and interactions, both in living and fixed samples. The preparation of high-quality samples for microscopic observation is the starting point for obtaining good resolution and optimum imaging results. This chapter attempts to provide basic methods for the application of conventional fluorescence and immunofluorescence microscopy for microbiology.

Keywords:

Fluorescence microscopy Fluorochrome Fluorophore Immunofluorescence 

References

  1. 1.
    Lichtman JF, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2:920–931CrossRefPubMedGoogle Scholar
  2. 2.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909CrossRefPubMedGoogle Scholar
  3. 3.
    Johnson I, Spence MTZ (eds) (2010) The molecular probes handbook. A guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies, CarlsbadGoogle Scholar
  4. 4.
    Bassas-Galia M, Nogales B, Arias S, Rohde M, Timmis KN, Molinari G (2012) Plant original Massilia isolates producing polyhydroxybutyrate, including one exhibiting high yields from glycerol. J Appl Microbiol 112:443–454CrossRefPubMedGoogle Scholar
  5. 5.
    Nonejuie P, Burkart M, Pogliano K, Pogliano J (2013) Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc Natl Acad Sci U S A 110:16169–16174CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gee CL, Papavinasasundaram KG, Blair SR, Baer CE, Falick AM, King DS, Griffin JE, Venghatakrishnan H, Zukauskas A, Wei J-R, Dhiman RK, Crick DC, Rubin EJ, Sassetti CM, Alber TM (2012) A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria. Sci Signal 5:ra7CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kocaoglu O, Calvo RA, Sham LT, Cozy LM, Lanning BR, Francis S, Winkler ME, Kearns DB, Carlson EE (2012) Selective penicillin-binding protein imaging probes reveal substructure in bacterial cell division. ACS Chem Biol 7:1746–1753CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Trier NH, Hansen PR, Houen G (2012) Production and characterization of peptide antibodies. Methods 56:136–144CrossRefPubMedGoogle Scholar
  9. 9.
    Toomre D, Bewersdorf J (2010) A new wave of cellular imaging. Annu Rev Cell Dev Biol 26:285–314CrossRefPubMedGoogle Scholar
  10. 10.
    Molinari G, Rohde M, Wilde C, Just I, Aktories K, Chhatwal GS (2006) Localization of the C3-like ADP-ribosyltransferase from Staphylococcus aureus during bacterial invasion of mammalian cells. Infect Immun 6:3673–3677CrossRefGoogle Scholar
  11. 11.
    Molinari G, Rohde M, Guzman CA, Chhatwal GS (2000) Two distinct pathways for the invasion of Streptococcus pyogenes in non-phagocytic cells. Cell Microbiol 2:145–154CrossRefPubMedGoogle Scholar
  12. 12.
    Blackburn GM (ed) (2006) Nucleic acids in chemistry and biology. Royal Society of Chemistry, CambridgeGoogle Scholar
  13. 13.
    Joux F, Lebaron P (2000) Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect 2:1523–1535CrossRefPubMedGoogle Scholar
  14. 14.
    Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q (2015) Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol 15:36CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U et al (2005) Mechanism of lipid‐body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763CrossRefPubMedGoogle Scholar
  16. 16.
    Hachmann AB, Sevim E, Gaballa A, Popham DL, Antelmann H, Helmann JD (2011) Reduction in membrane phosphatidylglycerol content leads to daptomycin resistance in Bacillus subtilis. Antimicrob Agents Chemother 55:4326–4337CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Johnson L, Mulcahy H, Kanevets U, Shi Y, Lewenza S (2012) Surface-localized spermidine protects the Pseudomonas aeruginosa outer membrane from antibiotic treatment and oxidative stress. J Bacteriol 194:813–826CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lewenza S, Vidal-Ingigliardi D, Pugsley AP (2006) Direct visualization of red fluorescent lipoproteins indicates conservation of the membrane sorting rules in the family Enterobacteriaceae. J Bacteriol 188:3516–3524CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Trevors JT (2003) Fluorescent probes for bacterial cytoplasmic membrane research. J Biochem Biophys Methods 57:87–103CrossRefPubMedGoogle Scholar
  20. 20.
    Kashyap DR, Wang M, Liu LH, Boons GJ, Gupta D, Dziarski R (2011) Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat Med 17:676–683CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tran TT, Panesso D, Mishra NN, Mileykovskaya E, Guan Z, Munita JM et al (2013) Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. MBio 4:e00281–13CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lamsa A, Liu W-T, Dorrestein PC, Pogliano K (2012) The Bacillus subtilis cannibalism toxin SDP collapses the proton motive force and induces. Mol Microbiol 84:486–500CrossRefPubMedGoogle Scholar
  23. 23.
    Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnier JB, Silverman GJ (2000) Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 97:5399–53404CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Molinari G, Chhatwal GS (1998) Invasion and survival of Streptococcus pyogenes in eukaryotic cells correlates with the source of the clinical isolates. J Infect Dis 177:1600–1607CrossRefPubMedGoogle Scholar
  25. 25.
    Gitai Z (2009) New fluorescence microscopy methods for microbiology: sharper, faster, and quantitative. Curr Opin Microbiol 12:341–346CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    van Teeffelen S, Shaevitz JW, Gitai Z (2012) Image analysis in fluorescence microscopy: bacterial dynamics as a case study. Bioessays 34:427–436CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Central Facility for Microscopy, Helmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations