Skip to main content

Protocols for the Production and Analysis of Isoprenoids in Bacteria and Yeast

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

Isoprenoids (a.k.a. terpenes/terpenoids) are the largest group of natural products. They fulfil a wide variety of both essential and non-essential roles in biology; many isoprenoids also have useful industrial applications. In recent years, there has been a significant focus on metabolic engineering of various isoprenoids in microbial cells. Here, we describe methods for lab-scale culturing, sampling and analytics of different isoprenoid classes using specific examples from the following classes: (1) highly volatile isoprenoids that sequester into culture headspaces, e.g. the hemiterpene isoprene; (2) volatile isoprenoids that can be collected in a non-toxic organic phase, e.g. the monoterpene limonene; and (3) non-volatile isoprenoids that accumulate in the cell, e.g. the carotenoid lycopene. Production methods are provided for isoprene, limonene, and lycopene as examples for each class. Specific analytical methods are provided for isoprene, limonene, terpinolene, caryophyllene, amorphadiene, linalool, nerolidol, pinene and lycopene. We focus on yeast and Escherichia coli as production organisms. The protocols can be modified for other organisms and products as appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDM:

Chemically defined medium

ECMet:

Extracellular metabolites

GC–MS:

Gas chromatography–mass spectrometry

HPLC:

High pressure/performance liquid chromatography

ISTD:

Internal standard

LLOQ:

Lower limit of quantitation

LOD:

Limit of detection

OD:

Optical density

PTFE:

Polytetrafluoroethylene (commonly identified as Teflon®, a DuPont brand name)

rpm:

revolutions per minute

SIM:

Selected ion monitoring

TB:

Terrific broth

TIC:

Total ion current (chromatogram)

ULOQ:

Upper limit of quantitation

YPD:

Yeast extract peptone dextrose (a.k.a. YEPD)

YPDG:

Yeast extract peptone dextrose galactose

References

  1. Vickers CE, Behrendorff JBYH, Bongers M, Brennan TCR, Bruschi M, Nielsen LK (2015) Production of industrially relevant isoprenoid compounds in engineered microbes. In: Kamm B (ed) Microorganisms in biorefineries. Springer, Berlin, pp 303–334

    Google Scholar 

  2. Vickers CE, Blank LM, Kromer JO (2010) Chassis cells for industrial biochemical production. Nat Chem Biol 6:875–877

    Article  CAS  PubMed  Google Scholar 

  3. Vickers CE, Bongers M, Liu Q, Delatte T, Bouwmeester H (2014) Metabolic engineering of volatile isoprenoids in plants and microbes. Plant Cell Environ 37(8):1753–1775

    Article  CAS  PubMed  Google Scholar 

  4. Rodriguez S, Kirby J, Denby CM, Keasling JD (2014) Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites. Nat Protoc 9:1980–1996

    Article  CAS  PubMed  Google Scholar 

  5. Jongedijk E, Cankar K, Ranzijn J, van der Krol S, Bouwmeester H, Beekwilder J (2014) Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae. Yeast 32:159–171

    PubMed  Google Scholar 

  6. Bentley FK, Melis A (2012) Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng 109:100–109

    Article  CAS  PubMed  Google Scholar 

  7. Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  PubMed  Google Scholar 

  8. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  9. Vickers C, Bydder S, Zhou Y, Nielsen L (2013) Dual gene expression cassette vectors with antibiotic selection markers for engineering in Saccharomyces cerevisiae. Microb Cell Fact 12:96

    Article  PubMed  PubMed Central  Google Scholar 

  10. Riesenberg D, Schulz V, Knorre WA et al (1991) High cell density cultivation of Escherichia coli at controlled specific growth rate. J Biotechnol 20:17–27

    Article  CAS  PubMed  Google Scholar 

  11. Willrodt C, David C, Cornelissen S, Bühler B, Julsing MK, Schmid A (2014) Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotechnol J 9:1000–1012

    Article  CAS  PubMed  Google Scholar 

  12. Zhang C, Chen X, Zou R, Zhou K, Stephanopoulos G, Too H-P (2013) Combining genotype improvement and statistical media optimization for isoprenoid production in E. coli. PLoS One 8:e75164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boghigian BA, Salas D, Ajikumar PK, Stephanopoulos G, Pfeifer B (2012) Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli. Appl Microbiol Biotechnol 93:1651–1661

    Article  CAS  PubMed  Google Scholar 

  14. Ajikumar PK, Xiao W-H, Tyo KEJ et al (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. FDA (2001) Guidance for industry: bioanalytical method validation. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. http://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf

  16. Bruschi M, Boyes S, Sugiarto H, Nielsen LK, Vickers CE (2011) A transferrable sucrose utilization approach for non-sucrose-utilizing Escherichia coli strains. Biotechnol Adv 30:1001–1010

    Article  PubMed  Google Scholar 

  17. El-Mansi EMT, Bryce CFA, Demain AL, Allman AR (2011) Fermentation microbiology and biotechnology, 3rd edn. CRC, Boca Raton

    Google Scholar 

  18. Grob K (1983) Broadening of peaks eluted before the solvent in capillary GC. 1. The role of solvent trapping. Chromatographia 17:357–360

    Article  CAS  Google Scholar 

  19. Grob K, Schilling B (1983) Broadening of peaks eluted before the solvent in capillary GC.2. The role of phase soaking. Chromatographia 17:361–367

    Article  CAS  Google Scholar 

  20. Behrendorff JBYH, Vickers CE, Chrysanthopoulos P, Nielsen LK (2013) 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis. Microb Cell Fact 12:76

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia E. Vickers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Vickers, C.E., Bongers, M., Bydder, S.F., Chrysanthopoulos, P., Hodson, M.P. (2015). Protocols for the Production and Analysis of Isoprenoids in Bacteria and Yeast. In: McGenity, T., Timmis, K., Nogales Fernández, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_107

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_107

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49126-3

  • Online ISBN: 978-3-662-49127-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics