Skip to main content

Protocols for Isolation and Analysis of Polyhydroxyalkanoates

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Some storage compounds such as polyhydroxyalkanates have been drawing considerable attention due to their similar properties to those of conventional plastics. Therefore many efforts have been done to develop and improve analytical methods to isolate and characterize these biopolymers. This chapter pretends to give easy guidelines in all the steps for recovering and characterizing these compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67

    Article  CAS  PubMed  Google Scholar 

  2. Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kessler B, Palleroni N (2000) Taxonomic implications of synthesis of poly-beta-hydroxybutyrate and other poly-beta-hydroxyalkanoates by aerobic pseudomonads. Int J Syst Evol Microbiol 50:711–713

    Article  CAS  PubMed  Google Scholar 

  4. Lemoigne M (1926) Produit des deshydration et de polymerisation de l’acide beta-oxybutirique. Bull Soc Chim Biol 8:770–782

    CAS  Google Scholar 

  5. Wampfler B, Ramsauer T, Rezzonico S et al (2010) Isolation and purification of medium chain length poly(3-hydroxyalkanoates) (mcl-PHA) for medical applications using nonchlorinated solvents. Biomacromolecules 11:2716–2723

    Article  CAS  PubMed  Google Scholar 

  6. Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21:580–605

    Article  CAS  Google Scholar 

  7. Degelau A, Scheper T, Bailey JE, Guske C (1995) Fluorometric measurement of poly-β hydroxybutyrate in Alcaligenes eutrophus by flow cytometry and spectrofluorometry. Appl Microbiol Biotechnol 42:653–657

    Article  CAS  Google Scholar 

  8. Berlanga M, Montereo MT, Hernandez-Borrell J, Guerrero R (2006) Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats. Int Microbiol 9:95–102

    CAS  PubMed  Google Scholar 

  9. Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  CAS  PubMed  Google Scholar 

  10. Gorenflo V, Steinbüchel A, Marose S, Reiseberg M, Scheper T (1999) Quantification of bacterial polyhydroxyalkanoic acids by Nile red staining. Appl Microbiol Biotechnol 51:765–772

    Article  CAS  PubMed  Google Scholar 

  11. Jendrossek D, Selchow O, Hoppert M (2007) Poly(3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in caryophanon latum. Appl Environ Microbiol 73:586–593

    Article  CAS  PubMed  Google Scholar 

  12. Benli M, Yigit N, Geven F, Güney K, Bingöl Ü (2008) Antimicrobial activity of endemic Crataegus tanacetifolia (Lam.) Pers and observation of the inhibition effect on bacterial cells. Cell Biochem Funct 26:844–851

    Article  CAS  PubMed  Google Scholar 

  13. Marchant HJ, Tomas DP (1983) Polylysine as an adhesive for the attachment of nanoplankton to substrates for electron microscopy. J Microsc 131:127–129

    Article  Google Scholar 

  14. Nagarajan P, Bates LS (1981) A rapid poly-L-lysine schedule for SEM studies of acetolyzed pollen grains. Pollen et Spores 23:273

    Google Scholar 

  15. Marienfeld S, Uhlemann E-M, Schmid R, Krämer R, Burkovski A (1997) Ultrastructure of the Corynebacterium glutamicum cell wall. Antonie Van Leeuwenhoek 72:291–297

    Article  CAS  PubMed  Google Scholar 

  16. Nevot M, Deroncele V, López-Iglesias C, Bozal N, Guinea J, Mercade E (2006) Ultrastructural analysis of the extracellular matter secreted by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3. Microbial Ecol 51:501–507

    Article  Google Scholar 

  17. Graham LL, Beveridge TJ (1994) Structural differentiation of the Bacillus subtilis 168 cell wall. J Bacteriol 176:1413–1421

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31

    Article  CAS  PubMed  Google Scholar 

  20. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque strain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodriguez E (2006) Aplicación de la Metodología de Superfícies de Respuesta en matraces y estrategias de producción en biorreactor para la obtención de biomasa y polihidroxialcanoatos por Pseudomonas aeruginosa 42A2. Universitat de Barcelona, Barcelona

    Google Scholar 

  22. Bassas M (2007) Estudi dels polihidroxialcanoats acumulats per Pseudomonas aeruginosa 42A2: Producció i caracterització. Universitat de Barcelona, Barcelona

    Google Scholar 

  23. Huijberts GN, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wampfler B, Ramsauer T, Kehl K, Zinn M, Thony-Meyer L (2010) Application of activated charcoal in the downstream processing of bacterial olefinic poly(3-hydroxyalkanoates). Chimia 64:784–788

    Article  CAS  Google Scholar 

  25. Cromwick AM, Foglia T, Lenz RW (1996) The microbial production of poly(hydroxyalkanoates) from tallow. Appl Microbiol Biotechnol 46:464–469

    Article  CAS  Google Scholar 

  26. Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Furrer P, Hany R, Rentsch D et al (2007) Quantitative analysis of bacterial medium-chain-length poly([R]-3-hydroxyalkanoates) by gas chromatography. J Chromatogr A 1143:199–206

    Article  CAS  PubMed  Google Scholar 

  28. Riis V, Mai W (1988) Gas chromatographic determination of poly-[beta]-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J Chromatogr A 445:285–289

    Article  CAS  Google Scholar 

  29. Gross RA, DeMello C, Lenz RW, Brandl H, Fuller RC (1989) The biosynthesis and characterization of poly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22:1106–1115

    Article  CAS  Google Scholar 

  30. de Waard P, van der Wal H, Huijberts G, Eggink G (1993) Heteronuclear NMR analysis of unsaturated fatty acids in poly(3- hydroxyalkanoates). Study of beta-oxidation in Pseudomonas putida. J Biol Chem 268:315–319

    PubMed  Google Scholar 

  31. Bassas M, Marques AM, Manresa A (2008) Study of the crosslinking reaction (natural and UV induced) in polyunsaturated PHA from linseed oil. Biochem Eng J 40:275–283

    Article  CAS  Google Scholar 

  32. Valentin HE, Berger PA, Gruys KJ et al (1999) Biosynthesis and characterization of poly(3-hydroxy-4-pentenoic acid). Macromolecules 32:7389–7395

    Article  CAS  Google Scholar 

  33. Casini E, de Rijk C, de Waard P, Eggink G (1997) Synthesis of poly(hydroxyaklanoate) from hydrolyzed linseed Oil. J Environ Polym Degrad 5:153–158

    CAS  Google Scholar 

  34. de Koning G, Witholt B (1996) A biodegradable rubber from bacteria, poly(hydroxyalkanoate) from Pseudomonads. Mater Sci Eng C 4:121–124

    Article  Google Scholar 

  35. De Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    PubMed  PubMed Central  Google Scholar 

  36. Eggink G, de Waard P, Huijberts GNM (1995) Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Can J Microbiol 41(suppl 1):14–21

    Article  CAS  PubMed  Google Scholar 

  37. Hany R, Hartmann R, Böhlen C et al (2005) Chemical synthesis and characterization of POSS-functionalized poly[3-hydroxyalkanoates]. Polymer 46:5025–5031

    Article  CAS  Google Scholar 

  38. Hartmann R, Hany R, Geiger T, Egli T, Witholt B, Zinn M (2004) Tailored biosynthesis of olefinic medium-chain-length poly{(R)-3-hydroxyalkanoates] in Pseudomonas putida GPo1 with improved thermal properties. Macromolecules 37:3780–6785

    Article  Google Scholar 

  39. Kato M, Bao HJ, Kang CK, Fukui T, Doi Y (1996) Production of a novel copolyester of 3-hydroxybutiric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp 61–3 from sugars. Appl Microbiol Biotechnol 45:363–370

    Article  CAS  Google Scholar 

  40. Kellerhals M, Kessler B, Witholt B (2000) Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHA) at laboratory scale and pilot plant scales. Macromolecules 33:4690–4698

    Article  CAS  Google Scholar 

  41. Lenz RW, Kim YB, Fuller RC (1992) Production of unusual bacterial polyesters by Pseudomonas oleovorans through cometabolism. FEMS Microbiol Rev 103:207–214

    Article  CAS  Google Scholar 

  42. Haywood GW, Anderson AJ, Dawes EA (1989) A survey of the accumulation of novel polyhydroxyalkanoates by bacteria. Biotechnol Lett 11:471–476

    Article  CAS  Google Scholar 

  43. Huijberts G, Van der Wal H, Wilkinson C, Eggink G (1994) Gas-chromatographic analysis of poly(3-hydroxyalkanoates) in bacteria. Biotech Technol 8:187–192

    Article  CAS  Google Scholar 

  44. Lee EY, Choi CY (1995) Gas chromatography–mass spectrometric analysis and its application to a screening procedure for novel bacterial polyhydroxyalkanoic acids containing long chain saturated and unsaturated monomers. J Ferment Bioeng 80:408–414

    Article  CAS  Google Scholar 

  45. Huijberts G, De Rijk T, De Waard P, Eggink G (1994) 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J Bacteriol 176:1661–1666

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mònica Bassas-Galià .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Bassas-Galià, M. (2015). Protocols for Isolation and Analysis of Polyhydroxyalkanoates. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols . Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_103

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_103

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49135-5

  • Online ISBN: 978-3-662-49137-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics