Protocols for the Chemical Analysis of Hydrocarbons in Petroleum Oils and the Assessment of Environmental Contamination

  • James W. ReadmanEmail author
  • Josep M. Bayona
  • Joan Albaigés
Part of the Springer Protocols Handbooks book series (SPH)


The composition of petroleum oils and their products is highly complex. A tiered approach to the chemical analysis is presented, ranging from relatively simple bulk assessments through to intricate fingerprinting techniques. An example of a standard operating procedure is included to provide detailed guidance for the analysis of hydrocarbons in petroleum oils. Environmental considerations with respect to weathering and degradation are also addressed to afford the assessment of environmental contamination following spillages. More comprehensive texts on the topic are identified.


Analysis Biomarkers Environmental weathering Fingerprinting GC-FID GC-MS Hydrocarbons Molecular markers Oil spills PAH Petroleum oils 



The authors acknowledge partial financial support by Defra (Project Ref. ME1312) and MICINN (CTM2008-02718-E/MAR and CTM2008-02721-E/MAR) through the project ‘European concerted action to foster prevention and best response to Accidental marine Pollution – ‘AMPERA’ (ERAC-CT2005-016165) within the framework of the EU ERA-Net Initiative (6th Framework Program).


  1. 1.
    Marshall AG, Rodgers RO (2008) Petroleomics: chemistry of underworld. PNAS 105:18090–18095CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    UNEP/IOC/IAEA (1992) Determination of petroleum hydrocarbons in sediments. Reference methods for marine pollution studies, 20. UNEP, Nairobi, 75 pp.Google Scholar
  3. 3.
    US EPA (1996) Method 3560. Supercritical fluid extraction of total recoverable hydrocarbons. Accessed 9 May 2014
  4. 4.
    Kelly CA, Law RJ, Emerson HS (2000) Methods of analysing hydrocarbons and polycyclic aromatic hydrocarbons (PAH) in marine samples. Science Series, Aquatic Environment Protection: Analytical Methods (12). Cefas, Lowestoft. 18 pp. Accessed 9 May 2014
  5. 5.
    US EPA (1996) Method 8440. Total recoverable petroleum hydrocarbons by infrared spectrophotometry. Accessed 9 May 2014
  6. 6.
    ASTM Standards: D 5739–00. Standard practice for oil spill source identification by gas chromatography and positive ion electron impact low resolution mass spectrometryGoogle Scholar
  7. 7.
    Galloway T, Sanger RC, Fillmann G, Readman JW, Smith KL, Ford TE, Depledge MH (2002) Rapid assessment of marine pollution using multiple biomarkers and chemical immunoassays. Environ Sci Technol 36:2219–2226CrossRefPubMedGoogle Scholar
  8. 8.
    Killops SD, Readman JW (1985) HPLC fractionation and GC-MS determination of aromatic hydrocarbons from oils and sediments. Org Geochem 8:247–257CrossRefGoogle Scholar
  9. 9.
    Wang Z, Stout SA (2007) Oil spill environmental forensics. Fingerprinting and source identification. Academic/Elsevier, Amsterdam, 544 ppGoogle Scholar
  10. 10.
    US EPA (2007) Method 8270d. Semi-volatile organic compounds by Gas Chromatography/Mass Spectrometry (GC/MS), Revision 4. Accessed 9 May 2014
  11. 11.
    Wang Z, Fingas MF (2003) Development of oil hydrocarbon fingerprinting and identification techniques. Mar Poll Bull 47:423–452CrossRefGoogle Scholar
  12. 12.
    Albaigés J, Kienhuis P, Dahlmann G (2014) Oil spill identification. In: Oil spills: a scholarly approach, Chap 4. Wiley, New York, in pressGoogle Scholar
  13. 13.
    Diez S, Jover E, Bayona JM, Albaigés J (2007) Prestige Oil Spill. III. Fate of a heavy oil in the marine environment. Environ Sci Technol 41:3075–3082CrossRefPubMedGoogle Scholar
  14. 14.
    Guitart C, Frickers P, Horillo-Carballo J, Law RJ, Readman JW (2008) Characterisation of sea surface chemical contamination after shipping accidents. Environ Sci Technol 42:2275–2282CrossRefPubMedGoogle Scholar
  15. 15.
    CEN (2012) CEN/TR 15522–2:2012, oil spill identification – waterborne petroleum and petroleum products - part 2: Analytical methodology and interpretation of results.Google Scholar
  16. 16.
    Eiserbeck C, Nelson R, Grice K, Curiale J, Reddy C (2012) Comparison of GC-MS, GC-MRM-MS, and GCxGC to characterize higher plant biomarkers in tertiary oils and rock extracts. Geochim Cosmochim Acta 87:299–322CrossRefGoogle Scholar
  17. 17.
    Díez S, Sabaté J, Viñas M, Bayona JM, Solanas AM, Albaigés J (2005) The Prestige oil spill. I. Biodegradation of a heavy fuel oil under simulated conditions. Environ Toxicol Chem 24:2203–2217CrossRefPubMedGoogle Scholar
  18. 18.
    Wang ZD, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L, Foght J, Semple K, Westlake DWS (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A 809:89–107CrossRefPubMedGoogle Scholar
  19. 19.
    Radović JR, Aeppli C, Nelson RK, Jimenez N, Reddy CM, Bayona JM, Albaigés J (2014) Assessment of photochemical processes in marine oil spill fingerprinting. Mar Poll Bull 79:268–277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • James W. Readman
    • 1
    Email author
  • Josep M. Bayona
    • 1
  • Joan Albaigés
    • 2
  1. 1.Plymouth Marine LaboratoryProspect Place, The Hoe, PlymouthDevonUK
  2. 2.Department of Environmental ChemistryIDAEA-CSICBarcelonaSpain

Personalised recommendations