Skip to main content

Protocols for the Isolation and Analysis of Lipopeptides and Bioemulsifiers

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

High molecular weight biosurfactants are produced from a number of different bacteria and comprise lipoproteins, proteins, polysaccharides, lipopolysaccharides or complexes containing several of these structural types, many of which have yet to be fully characterised. Lipopeptide biosurfactants are cyclic peptides with varying attached lipid chains and are most commonly isolated from Bacillus and Pseudomonas strains. A great deal of research has been carried out on these cyclic lipopeptides, and their structures have been fully characterised. The ability to isolate, purify and characterise these structures is extremely important, providing detailed information with regard to different cultivation condition and biological activities. Similar methods can be used for both lipopeptides and biopolymers especially when attempting to determine their amino acid sequences. The experimental techniques used to isolate, purify and analyse these biosurfactants are widely varied from simple colorimetric assays giving an approximate indication of the type of compounds present to the more complex mass spectrometric techniques that provide information on molecular mass and structural features. Mass spectrometry provides essential information in the identification of these structures using sophisticated MS/MS analysis and software technologies. The use of Edman degradation can help confirm the results observed from de novo sequencing experiments, thus providing further confirmation of amino acid sequence of both lipopeptides and protein-containing biopolymers. This chapter details information on the most commonly reported techniques used to analyse these types of biosurfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  3. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  4. Marchant R, Banat IM (2012) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605

    Article  CAS  PubMed  Google Scholar 

  5. Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565

    Article  CAS  PubMed  Google Scholar 

  6. Smyth TJP, Perfumo A, McClean S, Marchant R, Banat IM (2010) Isolation and analysis of lipopeptides and high molecular weight biosurfactants. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, pp 3689–3704

    Google Scholar 

  7. Smyth TJP, Perfumo A, Marchant R, Banat IM (2010) Isolation and analysis of low molecular weight microbial glycolipids. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, pp 3705–3723

    Chapter  Google Scholar 

  8. Kakinuma A, Hori M, Isono M, Tamura G, Arima K (1969) Determination of amino acid sequence in surfactin, a crystalline peptidolipid surfactant produce by Bacillus subtilis. Agric Biol Chem 33:971–997

    Article  CAS  Google Scholar 

  9. Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20

    Article  CAS  Google Scholar 

  10. Raaijmakers JM, De Bruijn I, De Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas sp: diversity, activity, biosynthesis and regulation. Mol Plant Microbe Interact 19:699–710

    Article  CAS  PubMed  Google Scholar 

  11. Sorenson D, Nielsen TH, Christophersen C, Sorensen J, Gaijhede M (2001) Cyclic lipoundecapeptide amphisin from Pseudomonas sp DSS73. Acta Crystallogr C 57:1123–1124

    Article  Google Scholar 

  12. Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2004) Characterisation of two Pseudomonas putida lipopeptides biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 54:97–113

    Google Scholar 

  13. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  PubMed  Google Scholar 

  14. Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ, Rosenberg E (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Chopdae BA (2010) Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol 30:127–144

    Article  CAS  PubMed  Google Scholar 

  17. Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pecci Y, Rivardo F, Martinotti MG, Allegrone G (2010) LC/ESI-MS/MS characterization of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strains. J Mass Spectrom 45:772–778

    Article  CAS  PubMed  Google Scholar 

  19. Mandal SM, Sharma S, Pinnaka AK, Kumari A, Korpole S (2013) Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol 12:152

    Article  Google Scholar 

  20. Chooklin CS, Maneerat S, Saimmai A (2014) Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65. Appl Biochem Biotechnol 173:624–645

    Article  CAS  PubMed  Google Scholar 

  21. Janek T, Lukaszewicz M, Rezanka T, Krasowska A (2010) Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the arctic archipelago of Svalbard. Bioresour Technol 101:6118–6123

    Article  CAS  PubMed  Google Scholar 

  22. Franzetti A, Gandolfi I, Raimondi C, Bestetti G, Banat IM, Smyth TJ, Papacchini M, Cavallo M, Fracchia L (2012) Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresour Technol 108:245–251

    Article  CAS  PubMed  Google Scholar 

  23. Zheng C, Li Z, Su J, Zhang R, Lui C, Zhao M (2012) Characterisation and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. J Appl Microbiol 113:44–51

    Article  CAS  PubMed  Google Scholar 

  24. Phetrong K, Kittikun A, Maneerat S (2008) Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. Anitratus SM7. Songklanakarin J Sci Technol 30:297–305

    Google Scholar 

  25. Wang J, Haddad NIA, Yang S-Y, Mu B-Z (2010) Structural characterization of lipopeptides from Brevibacillus brevis HOB1. Appl Biochem Biotechnol 160:812–821

    Article  CAS  PubMed  Google Scholar 

  26. Symmank H, Franke P, Saenger W, Berhard F (2002) Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Eng 15:913–921

    Article  CAS  PubMed  Google Scholar 

  27. Aguilar M-L (2004) Methods in molecular biology. In: Aguilar M-I (ed) HPLC of peptides and proteins; methods and protocols. Humana Press, Totowa

    Google Scholar 

  28. Jang JY, Yang SY, Kim YC, Park MY, Kim JC, Kim IS (2013) Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem 61:6788–6791

    Google Scholar 

  29. Lui X, Ren B, Chen M, Wang H, Kokare CR, Zhou X, Wang J, Dai H, Song F, Lui M, Wang J, Wang S, Zhang L (2010) Production and characterisation of a group of bioemulsifiers from the marine Bacillus velezensis strain H3. Appl Microbiol Biotechnol 87:1881–1893

    Article  Google Scholar 

  30. Monteiro AS, Bonfim MRQ, Domingues VS, Correa A, Siqueira EP, Zani CL, Santos VL (2010) Identification and characterization of bioemulsifier-producing yeasts isolated from effluents of a dairy industry. Bioresour Technol 101:5186–5193

    Article  CAS  PubMed  Google Scholar 

  31. Toren A, Navon-Venezia S, Ron EZ, Rosenberg E (2001) Emulsifying activities of purified alasan proteins from Acinetobacter radioresistens HA53. Appl Environ Microbiol 67:1102–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  35. Vecino X, Barbosa-Pereira L, Devesa-Rey R, Cruz JM, Moldes AB (2014) Optimisation of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell-bound biosurfactant/bioemulsifier. J Sci Food Agric. doi:10.1002/jsfa.6720

    PubMed  Google Scholar 

  36. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    CAS  PubMed  PubMed Central  Google Scholar 

  37. AOAC Official Method of Analysis (1990) Method 969.33

    Google Scholar 

  38. Chaplin MF (1986) Monosaccharides. In: Chaplin MF, Kennedy JF (eds) Carbohydrate analysis: a practical approach. IRL Press, Oxford, pp 1–36

    Google Scholar 

  39. Manzi AE, Varki A (1993) Composition analysis of glycoproteins. In: Fukuda M, Kobata A (eds) Glycobiology: a practical approach. Oxford University Press, Oxford, pp 27–77

    Google Scholar 

  40. Strader MB, Tabb DL, Hervey WJ, Pan C, Hurst GB (2006) Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems. Anal Chem 78:125–134

    Article  CAS  PubMed  Google Scholar 

  41. Pathak KV, Keharia H, Gupta K, Thakur SS, Balaram P (2012) Lipopeptides from the Banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrum 23:1716–1728

    Article  CAS  Google Scholar 

  42. Rautela R, Singh AK, Shukla A, Cameotra SS (2014) Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans. Antonie Van Leeuwenhoek 5:809–821

    Article  Google Scholar 

  43. Zachara NE, Gooley AA (2000) Identification of glycosylation sites in mucin peptides by Edman degradation. Methods Mol Biol 125:121–128

    CAS  PubMed  Google Scholar 

  44. Graham RLJ, Graham C, McMullan G (2007) Microbial proteomics: a mass spectrometry primer for biologists. Microb Cell Fact 15:6–26

    Google Scholar 

  45. Moran S, Robertson K, Paradisi F, Rai DK, Murphy CD (2010) Production of lipopeptides in Bacillus sp. CS93 isolated from Pozal. FEMS Microbiol Lett 304:69–73

    Article  CAS  PubMed  Google Scholar 

  46. O’Connor NK, Rai DK, Clark BR, Murphy CD (2012) Production of the novel antibiotic trifluorosurfactin via precursor-directed biosynthesis. J Fluor Chem 143:210–215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. Banat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Smyth, T.J., Rudden, M., Tsaousi, K., Marchant, R., Banat, I.M. (2014). Protocols for the Isolation and Analysis of Lipopeptides and Bioemulsifiers. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols . Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2014_29

Download citation

  • DOI: https://doi.org/10.1007/8623_2014_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49135-5

  • Online ISBN: 978-3-662-49137-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics