Advertisement

Sampling the Subsurface

  • Thomas L. KieftEmail author
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Drilling and coring methods developed for sampling deep subsurface terrestrial environments have led to the discovery of active, diverse, indigenous microbial communities in a variety of subsurface habitats, including oil and natural gas reservoirs. The primary drilling and coring methods are hollow-stem augering, direct-push coring, cable-tool drilling, and rotary drilling. Rotary drilling is required for depths >300 m and for hard rock environments. The potential for chemical and microbiological contamination during drilling, coring, and sample handling is great, and so obtaining subsurface samples that are truly representative of the subsurface and that are suitable for geochemical and microbiological analyses requires specialized techniques. Solute and particulate tracers are used to quantify chemical and microbiological contamination, respectively. Cores are dissected to remove inner subcore material, in which tracer concentrations should be orders of magnitude lower than in the surrounding material. Samples are generally processed in an anaerobic chamber to avoid exposure of redox-sensitive chemical species and strictly anaerobic microbes to O2. Once drilled, boreholes can be further used to collect groundwater microbes, monitor subsurface chemistry and microbial processes, and enrich for microorganisms. While the methods described here have been successfully used in a variety of subsurface environments, including deep marine sediments, other approaches have also been used, e.g., sampling in deep mines, and still others are being developed.

Keywords:

Coring Deep biosphere Drilling Geomicrobiology Groundwater Petroleum reservoir Subsurface Tracer technology 

References

  1. 1.
    Chapelle FH (1993) Ground-water microbiology & geochemistry. Wiley, New YorkGoogle Scholar
  2. 2.
    Amy PS, Haldeman DL (1997) The microbiology of the terrestrial deep subsurface. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Fredrickson JK, Fletcher M (2001) Subsurface microbiology and biogeochemistry. Wiley-Liss, New YorkGoogle Scholar
  4. 4.
    Colwell FS, D’Hondt S (2013) Nature and extent of the deep biosphere. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in earth, vol 75. Reviews in mineralogy & geochemistry. Mineralogical Society of America, Chantilly, VA, pp 547–574Google Scholar
  5. 5.
    Bastin ES, Greer FE, Merritt CA, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63:21–24CrossRefPubMedGoogle Scholar
  6. 6.
    Ghiorse WC, Balkwill DL (1983) Enumeration and morphological characterization of bacteria indigenous to subsurface environments. Dev Ind Microbiol 24:213–224Google Scholar
  7. 7.
    Hirsch P, Rades-Rohkohl E (1983) Microbial diversity in a groundwater aquifer in northern Germany. Dev Ind Microbiol 24:183–200Google Scholar
  8. 8.
    Wilson JT, McNabb JF, Balkwill DL, Ghiorse WC (1983) Enumeration and characterization of bacteria indigenous to a shallow aquifer. Ground Water 21:134–142CrossRefGoogle Scholar
  9. 9.
    Balkwill DL (1989) Numbers, diversity, and morphological characteristics of aerobic, heterotrophic bacteria in deep subsurface sediments from a site in South Carolina. Geomicrobiol J 7:33–52CrossRefGoogle Scholar
  10. 10.
    Balkwill DL, Fredrickson JK, Thomas JM (1989) Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep Southeast Coast Plain subsurface sediments. Appl Environ Microbiol 55:1058–1065PubMedPubMedCentralGoogle Scholar
  11. 11.
    Fredrickson JK, Garland TR, Hicks RJ, Thomas JM, Li SW, McFadden KM (1989) Lithoautotrophic and heterotrophic bacteria in deep subsurface sediments and their relation to sediment properties. Geomicrobiol J 7:53–66CrossRefGoogle Scholar
  12. 12.
    Hazen TC, Jimenez L, de Victoria GLF CB (1991) Comparisons of bacteria from deep subsurface sediment and adjacent groundwater. Microb Ecol 22:293–304CrossRefPubMedGoogle Scholar
  13. 13.
    Lehman RM (2007) Understanding of aquifer microbiology is tightly linked to sampling approaches. Geomicrobiol J 24:331–341CrossRefGoogle Scholar
  14. 14.
    Lehman RM, Colwell FS, Bala GA (2001) Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous-flow conditions. Appl Environ Microbiol 67:2799–2809CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lehman RM, O’Connell SP, Banta A, Fredrickson JK, Reysenbach A-L, Kieft TL, Colwell FS (2004) Microbiological comparison of core and groundwater samples collected from a fractured basalt aquifer with that of dialysis chambers incubated in situ. Geomicrobiol J 21:169–182CrossRefGoogle Scholar
  16. 16.
    Lehman RM, Roberto FF, Early D, Bruhn BF, Brink SE, O’Connell SP, Delwiche ME, Colwell FS (2001) Attached and unattached bacterial communities in a 120-m corehole in an acidic, crystalline rock aquifer. Appl Environ Microbiol 67:2095–2106CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Phelps TJ, Fliermans CB, Garland TR, Pfiffner SM, White DC (1989) Recovery of deep subsurface sediments for microbiological studies. J Microbiol Methods 9:267–280CrossRefGoogle Scholar
  18. 18.
    Wilhelms A, Larter SR, Head I, Farrimond P, di-Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411:1034–1037CrossRefPubMedGoogle Scholar
  19. 19.
    Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–349CrossRefPubMedGoogle Scholar
  20. 20.
    Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180CrossRefPubMedGoogle Scholar
  21. 21.
    Tang Y-Q, Li Y, Zhao J-Y, Chi C-Q, Huang L-X, Dong H-P, Wu L-L (2012) Microbial communities in long-term, water flooded petroleum reservoirs with different in situ temperatures in the Huabei oilfield, China. PLoS One 7:e33535CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Davis JP, Struchtemeyer CG, Elshahed MS (2012) Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA). Microb Ecol 64:942–954CrossRefPubMedGoogle Scholar
  23. 23.
    Kirk MF, Martini AM, Breecker DO, Colman DR, Takacs-Vesbach C, Petsch ST (2012) Impact of reservoir natural gas production on geochemistry and microbiology in a shale-gas reservoir. Chem Geol 332–333:15–25CrossRefGoogle Scholar
  24. 24.
    Struchtemeyer CG, Elshahed MS (2012) Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in North Central Texas, USA. FEMS Microbiol Ecol 81:13–25CrossRefPubMedGoogle Scholar
  25. 25.
    Cluff MA, Hartsock A, MacRae JD, Carter K, Mouser PJ (2014) Environ Sci Technol 48:6508–6517CrossRefPubMedGoogle Scholar
  26. 26.
    Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454CrossRefGoogle Scholar
  27. 27.
    Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315CrossRefPubMedGoogle Scholar
  28. 28.
    Lin LH, Wang P-L, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Sherwood Lollar B, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482CrossRefPubMedGoogle Scholar
  29. 29.
    Chivian D, Alm E, Brodie E, Culley D, Dehal P, DeSantis T, Gihring T, Lapidus A, Lin L-H, Lowry S, Moser D, Richardson P, Southam G, Wanger G, Pratt L, Andersen G, Hazen T, Brockman F, Arkin A, Onstott T (2008) Environmental genomics reveals a single species ecosystem deep within the Earth. Science 322:275–278CrossRefPubMedGoogle Scholar
  30. 30.
    Sherwood Lollar B, Voglesonger K, Lin L-H, LaCrampe-Couloume G, Telling J, Abrajano TA, Onstott TC, Pratt LM (2007) Hydrologic controls on episodic H2 release from Precambrian fractured rocks – energy for deep subsurface life on Earth and Mars. Astrobiology 7:971–986CrossRefPubMedGoogle Scholar
  31. 31.
    Sherwood Lollar B, Westgate TD, Ward JA, Slater GF, Lacrampe-Couloume G (2002) Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416:522–524CrossRefPubMedGoogle Scholar
  32. 32.
    Onstott TC, Phelps TJ, Colwell FS, Ringelberg D, White DC, Boone DR (1998) Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Bain, Virginia. Geomicrobiol J 15:353–385CrossRefGoogle Scholar
  33. 33.
    Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, Lollar BS, Pratt LM, Boice E, Southam G, Wanger G, Baker BJ, Pfiffner SM, Lin L-H, Onstott TC (2005) Desulfotomaculum and Methanobacterium spp. dominate a 4-to 5-kilometer-deep fault. Appl Environ Microbiol 71:8773–8783CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Borgonie G, García-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, Onstott TC (2011) Nematoda from the terrestrial deep subsurface of South Africa. Nature 474:79–82CrossRefPubMedGoogle Scholar
  35. 35.
    Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Templeton AS, Kieft TL, Smith RL, Sanford WE, Callaghan RL, Mitton JB, Spear JR (2008) Subsurface microbial diversity in deep-granitic fracture water in Colorado. Appl Environ Microbiol 74:143–152CrossRefPubMedGoogle Scholar
  36. 36.
    Pedersen K, Hallbeck L, Arlinger J, Erlandson AC, Jahromi N (1997) Investigation of the potential for microbial contamination of deep granitic aquifers during drilling using 16s rRNA gene sequencing and culturing methods. J Microbiol Methods 30:179–192CrossRefGoogle Scholar
  37. 37.
    Fukuda A, Haigiwara H, Ishimura T, Kouduka M, Ioka S, Amano Y, Tsunogai U, Suzuki Y, Mizuno T (2010) Geomicrobiological properties of ultra-deep granitic groundwater from the Mizunami Underground research Laboratory (MIU), central Japan. Microb Ecol 60:214–225CrossRefPubMedGoogle Scholar
  38. 38.
    Griebler C, Mindl B, Slezak D, Geiger-Kaiser M (2002) Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat Microb Ecol 28:117–129CrossRefGoogle Scholar
  39. 39.
    Besemer K, Moeseneder MM, Arrieta JM, Herndl GJ, Peduzzi P (2005) Complexity of bacterial communities in a river floodplain system (Danube, Austria). Appl Environ Microbiol 71:609–620CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Flynn TM, Sanford RA, Bethke CM (2008) Attached and suspended microbial communities in a pristine confined aquifer. Water Resour Res 44, W07425. doi: 10.1029/2007WR006633 CrossRefGoogle Scholar
  41. 41.
    Alonso C, Gomez-Pereira P, Ramette A, Ortega L, Fuchs BM, Amann R (2010) Multilevel analysis of the bacterial diversity along the environmental gradient Rio de la Plata-South Atlantic Ocean. Aquat Microb Ecol 61:57–72CrossRefGoogle Scholar
  42. 42.
    Colwell FS, Stormberg GJ, Phelps TJ, Birnbaum SA, McKinley J, Rawson SA, Veverka C, Goodwin S, Long PE, Russell BF, Garland T, Thompson D, Skinner P, Grover S (1992) Innovative techniques for collection of saturated and unsaturated subsurface basalts and sediments for microbiological characterization. J Microbiol Methods 15:279–292CrossRefGoogle Scholar
  43. 43.
    Russell BF, Phelps TJ, Griffin WT, Sargent KA (1992) Procedures for sampling deep subsurface microbial communities in unconsolidated sediments. Ground Water Monit Rev 12:96–104CrossRefGoogle Scholar
  44. 44.
    Kieft TL, Phelps TJ, Fredrickson JK (2007) Drilling, coring, and sampling subsurface environments. In: Hurst CJ (ed) Manual of environmental microbiology, 3rd edn. ASM Press, Washington, DC, pp 799–817Google Scholar
  45. 45.
    Smith DC, Spivack AJ, Fisk MR, Haveman SA, Staugudigel H, Ocean Drilling Program Leg 185 Shipboard Scientific Party (2000) Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol J 17:207–219CrossRefGoogle Scholar
  46. 46.
    Smith DC, Spivack AJ, Fisk MR, Haveman SA, Staugudigel H, Ocean Drilling Program Leg 185 Shipboard Scientific Party (2000b) Methods for quantifying potential microbial contamination during deep ocean coring. ODP Technical Note 28Google Scholar
  47. 47.
    Lever MA, Alperin M, Engelen B, Inagaki F, Nakagawa S, Steinsbu BO, Teske A, IODP Expedition 301 Scientists (2006) Trends in basalt and sediment core contamination during IODP Expedition 301. Geomicrobiol J 23:517–530CrossRefGoogle Scholar
  48. 48.
    D’Hondt S, Inagaki F, Ferdelman T, Jorgensen BB, Kato K, Kemp P, Sobecky P, Sogin M, Takai K (2007) Exploring subseafloor life with the integrated ocean drilling program. Sci Drill 5:26–37CrossRefGoogle Scholar
  49. 49.
    Riggs CO, Hathaway AW (1988) Ground-water monitoring field practice – an overview. In: Collins AG, Johnson AI (eds) Ground-water contamination: field methods, ASTM STP 963. American Society for Testing and Materials, Philadelphia, pp 121–136CrossRefGoogle Scholar
  50. 50.
    Beck FP, Clark PJ, Puls RW (2002) Direct push methods for locating and collecting cores of aquifer sediment and zero-valent iron from a permeable reactive barrier. Ground Water Monit Bioremed 22:165–168CrossRefGoogle Scholar
  51. 51.
    Zlotnik VA, Burbach M, Swinehart J, Bennett D, Fritz S, Loope DB, Olaguera F (2007) Using direct-push methods for aquifer characterization in dune-lake environments of the Nebraska sand hills. Environ Eng Geosci 13:205–216CrossRefGoogle Scholar
  52. 52.
    Johnson RL, Brow CN, Johnson RO, Simon HM (2013) Cryogenic core collection and preservation of subsurface samples for biomolecular analysis. Ground Water Monit Bioremed 33:38–43Google Scholar
  53. 53.
    Struchtemeyer CG, Davis JP, Elshahed MS (2011) Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale. Appl Environ Microbiol 77:4744–4753CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Beeman RE, Suflita JM (1989) Evaluation of deep subsurface sampling procedures using serendipitous microbial contaminants as tracers organisms. Geomicrobiol J 7:223–233CrossRefGoogle Scholar
  55. 55.
    Chapelle FH, McMahon PB (1991) Geochemistry of dissolved inorganic carbon in a coastal plain aquifer:1. Sulfate from confining beds as an oxidant in microbial CO2 production. J Hydrol 127:85–108CrossRefGoogle Scholar
  56. 56.
    Fredrickson JK, Brockman FJ, Bjornstad BN, Long PE, Li SW, McKinley JP, Conca JL, Kieft TL, Balkwill DL (1993) Microbiological characteristics of pristine and contaminated deep vadose sediments from an arid region. Geomicrobiol J 11:95–107CrossRefGoogle Scholar
  57. 57.
    Lehman RM, Colwell FS, Ringelberg D, White DC (1995) Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores. J Microbiol Methods 22:263–281CrossRefGoogle Scholar
  58. 58.
    Onstott TC, Moser DP, Pfiffner SM, Fredrickson JK, Brockman FJ, Phelps TJ, White DC, Peacock A, Balkwill D, Hoover R, Krumholz LR, Borscik M, Kieft TL, Wilson R (2003) Indigenous and introduced microorganisms in rock samples from a deep gold mine. Environ Microbiol 5:1168–1191CrossRefPubMedGoogle Scholar
  59. 59.
    Pellizari L, Neumann D, Alawi M, Voigt D, Norden B, Würdemann H (2013) The use of tracers to assess drill-mud penetration depth into sandstone cores during deep drilling: method development and application. Environ Earth Sci 70:3727–3738CrossRefGoogle Scholar
  60. 60.
    McKinley JP, Colwell FS (1996) Application of perfluorocarbon tracers to microbial sampling in subsurface environments using mud-rotary and air-rotary drilling techniques. J Microbiol Methods 26:1–9CrossRefGoogle Scholar
  61. 61.
    Fournelle HJ, Day EK, Page WB (1957) Experimental ground water pollution at Anchorage, Alaska. Public Health Rep 72:203–209CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Juck DF, Whissell G, Steven B, Pollard W, McKay CP, Greer CW, Whyte LG (2005) Utilization of fluorescent microspheres and a green-fluorescent protein marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian high arctic. Appl Environ Microbiol 71:1035–1041CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dong Y, Kumar CG, Chia N, Kim P-J, Miller PA, Price ND, Can IKO, Flynn TM, Sanford RA, Krapac IG, Locke RA, Hong P-Y, Tamaki H, Liu W-T, Mackie RI, Hernandez AG, Wright CL, Mikel MA, Walker JL, Sivaguru M, Fried G, Yannarell AC, Fouke BW (2014) Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir. Environ Microbiol 16:1695–1708CrossRefPubMedGoogle Scholar
  64. 64.
    Gihring TM, Moser DP, Lin L-H, Davidson M, Onstott TC, Morgan L, Millesson M, Kieft TL, Trimarco E, Balkwill DL, Dollhopf ME (2006) The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol J 23:415–430CrossRefGoogle Scholar
  65. 65.
    Orcutt BN, Bach W, Becker K, Fisher AT, Hentscher M, Toner BM, Wheat CG, Edwards KJ (2011) Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J 5:692–703CrossRefPubMedGoogle Scholar
  66. 66.
    Orcutt B, Wheat CG, Edwards K (2010) Subseafloor ocean crust microbial observatories: development of FLOCS (flow-through osmo colonization system) and evaluation of borehole construction materials. Geomicrobiol J 27:143–157CrossRefGoogle Scholar
  67. 67.
    Silver BJ, Onstott TC, Rose G, Lin L-H, Ralston C, Sherwood-Lollar B, Pfiffner SM, Kieft TL, McCuddy S (2010) In situ cultivation of subsurface microorganisms in a deep mafic sill: implications for SLiMEs. Geomicrobiol J 27:329–348CrossRefGoogle Scholar
  68. 68.
    Dazzo FB, Schmid M, Hartman A (2007) Immunofluorescence microscopy and fluorescence in situ hybridization combined with CMEIAS and other image analysis tools for soil- and plant-associated microbial autecology. In: Hurst CJ (ed) Manual of environmental microbiology, 3rd edn. ASM Press, Washington, DC, pp 712–733Google Scholar
  69. 69.
    Kvenvolden KA (2007) Potential effects of gas hydrate on human welfare. Proc Natl Acad Sci 96:3420–3426CrossRefGoogle Scholar
  70. 70.
    Archer D (2007) Methane hydrate stability and anthropogenic climate change. Biogeoscience 4:521–544CrossRefGoogle Scholar
  71. 71.
    Colwell FS, Boyd S, Delwiche ME, Reed DW, Phelps TJ, Newby DT (2008) Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia Margin. Appl Environ Microbiol 74:3444–3452CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mancinelli RL (2000) Accessing the Martian deep subsurface to search for life. Planet Space Sci 48:1035–1042CrossRefGoogle Scholar
  74. 74.
    Pfiffner SM, Onstott TC, Ruskeeniemi T, Talikka M, Bakermans C, McGown D, Chan E, Johnson A, Phelps TJ, Le Puil M, Difurio SA, Pratt LM, Stotler R, Frape S, Telling J, Sherwood Lollar B, Neill I, Zerbin B (2008) Challenges for coring deep permafrost on earth and mars. Astrobiology 8:623–638CrossRefPubMedGoogle Scholar
  75. 75.
    Zacny K, Bar-Cohen Y, Brennan M, Briggs G, Cooper G, Davis K, Dolgin B, Glaser D, Glass B, Gorevan S, Guerrero J, Mckay C, Paulsen G, Stanley S, Stoker C (2008) Drilling systems for extraterrestrial subsurface exploration. Astrobiology 8:665–706CrossRefPubMedGoogle Scholar
  76. 76.
    Erzinger J, Wiersberg T, Zimmer M (2006) Real-time mud gas logging and sampling during drilling. Geofluids 6:225–233Google Scholar
  77. 77.
    Kieft TL, Kovacik WP Jr, Ringelberg DB, White DC, Haldeman DL, Amy PS, Hersman LE (1997) Factors limiting to microbial growth and activity at a proposed high-level nuclear repository, Yucca Mountain, Nevada. Appl Environ Microbiol 63:3128–3133PubMedPubMedCentralGoogle Scholar
  78. 78.
    Brockman FJ, Li SW, Fredrickson JK, Ringelberg DB, Kieft TL, Spadoni CM, White DC, McKinley JP (1998) Post-sampling changes in microbial community composition and activity in a subsurface paleosol. Microb Ecol 36:152–164CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.New Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations