Skip to main content

Primers: Functional Marker Genes for Methylotrophs and Methanotrophs

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Methylotrophs are a diverse group of microorganisms that use compounds without a carbon–carbon bond as a sole source of carbon and energy for growth. Methylotrophs play an important role in most environments, including terrestrial, aquatic, and marine habitats. Several approaches to detect and identify methylotrophs in environmental samples have been developed. A common approach is to target protein-encoding genes since methylotrophs are phylogenetically diverse, making the design of 16S rRNA primers and probes with wide coverage difficult or impossible. The mxaF gene encoding the active site subunit of the methanol dehydrogenase is one of the more universal targets for methylotrophs, as are some of the genes involved in C1-transfer reactions, such as fhcD gene of methanopterin-linked pathway. The pmoA gene, encoding the β-subunit of the particulate methane monooxygenase, is a common target for methanotrophs. In many cases the evolution of these functional genes is congruent with the 16S rRNA and other phylogenetic markers, making them suitable for inferring taxonomy. This chapter summarizes the available primers and methods to detect or quantify various aerobic methylotrophs in environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  3. Kolb S (2009) Aerobic methanol-oxidizing bacteria in soil. FEMS Microbiol Lett 300:1–10

    Article  CAS  PubMed  Google Scholar 

  4. Crowther GJ, Kosály G, Lidstrom ME (2008) Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 190:5057–5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anthony C (1982) The biochemistry of methylotrophs. Academic Press, London, UK

    Google Scholar 

  6. Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348

    Article  CAS  PubMed  Google Scholar 

  7. Janvier M, Regnault B, Grimont P (2003) Development and use of fluorescent 16S rRNA-targeted probes for the specific detection of Methylophaga species by in situ hybridization in marine sediments. Res Microbiol 154:483–490

    Article  CAS  PubMed  Google Scholar 

  8. Stoecker K, Bendinger B, Schöning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci U S A 103:2363–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bourne DG, Holmes AJ, Iversen N, Murrell JC (2000) Fluorescent oligonucleotide rDNA probes for specific detection of methane oxidising bacteria. FEMS Microbiol Ecol 31:29–38

    Article  CAS  PubMed  Google Scholar 

  10. Dedysh SN, Dunfield PF, Derakshani M, Stubner S, Heyer J, Liesack W (2003) Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol Ecol 43:299–308

    Article  CAS  PubMed  Google Scholar 

  11. Eller G, Stubner S, Frenzel P (2001) Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol Lett 198:91–97

    Article  CAS  PubMed  Google Scholar 

  12. Friedrich U, Van Langenhove H, Altendorf K, Lipski A (2003) Microbial community and physicochemical analysis of an industrial waste gas biofilter and design of 16S rRNA-targeting oligonucleotide probes. Environ Microbiol 5:183–201

    Article  CAS  PubMed  Google Scholar 

  13. Tsien HC, Bratina BJ, Tsuji K, Hanson RS (1990) Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl Environ Microbiol 56:2858–2865

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Knief C, Frances L, Cantet F, Vorholt JA (2008) Cultivation-independent characterization of Methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl Environ Microbiol 74:2218–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315

    Article  CAS  PubMed  Google Scholar 

  16. McDonald IR, Murrell JC (1997) The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Neufeld JD, Schäfer H, Cox MJ, Boden R, McDonald IR, Murrell JC (2007) Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J 1:480–491

    Article  CAS  PubMed  Google Scholar 

  18. Lau E, Fisher MC, Steudler PA, Cavanaugh CM (2013) The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments. PLoS One 8:e56993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2004) Utility of environmental primers targeting ancient enzymes: methylotroph detection in Lake Washington. Microb Ecol 48:463–472

    Article  CAS  PubMed  Google Scholar 

  20. Kalyuzhnaya MG, Nercessian O, Lidstrom ME, Chistoserdova L (2005) Development and application of polymerase chain reaction primers based on fhcD for environmental detection of methanopterin-linked C1-metabolism in bacteria. Environ Microbiol 7:1269–1274

    Article  CAS  PubMed  Google Scholar 

  21. Holmes AJ, Costello AM, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208

    Article  CAS  PubMed  Google Scholar 

  22. Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bourne DG, McDonald IR, Murrell JC (2001) Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 67:3802–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng YS, Halsey JL, Fode KA, Remsen CC, Collins MLP (1999) Detection of methanotrophs in groundwater by PCR. Appl Environ Microbiol 65:648–651

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Steinkamp R, Zimmer W, Papen H (2001) Improved method for detection of methanotrophic bacteria in forest soils by PCR. Curr Microbiol 42:316–322

    Article  CAS  PubMed  Google Scholar 

  26. Fjellbirkeland A, Torsvik V, Ovreås L (2001) Methanotrophic diversity in an agricultural soil as evaluated by denaturing gradient gel electrophoresis profiles of pmoA, mxaF and 16S rDNA sequences. Antonie Van Leeuwenhoek 79:209–217

    Article  CAS  PubMed  Google Scholar 

  27. Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharp CE, Stott MB, Dunfield PF (2012) Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing. Front Microbiol 3:1–9

    Article  Google Scholar 

  29. Degelmann DM, Borken W, Drake HL, Kolb S (2010) Different atmospheric methane-oxidizing communities in European beech and Norway spruce soils. Appl Environ Microbiol 76:3228–3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kip N, Fritz C, Langelaan ES, Pan Y, Bodrossy L, Pancotto V, Jetten MSM, Smolders AJP, Op den Camp HJM (2012) Methanotrophic activity and diversity in different Sphagnum magellanicum dominated habitats in the southernmost peat bogs of Patagonia. Biogeosciences 9:47–55

    Article  CAS  Google Scholar 

  31. Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, Grasby SE, Strack M, Dunfield PF (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16:1867–1878

    Article  CAS  PubMed  Google Scholar 

  32. Luesken FA, Zhu B, van Alen TA, Butler MK, Rodriguez Diaz M, Song B, Op den Camp HJM, Jetten MSM, Ettwig KF (2011) pmoA primers for detection of anaerobic methanotrophs. Appl Environ Microbiol 77:3877–3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kolb S, Knief C, Dunfield PF, Conrad R (2005) Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ Microbiol 7:1150–1161

    Article  CAS  PubMed  Google Scholar 

  34. Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MSM, Klotz MG (2011) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3:91–100

    Article  CAS  PubMed  Google Scholar 

  35. Auman AJ, Lidstrom ME (2002) Analysis of sMMO-containing type I methanotrophs in Lake Washington sediment. Environ Microbiol 4:517–524

    Article  CAS  PubMed  Google Scholar 

  36. Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2003) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6:111–120

    Article  Google Scholar 

  37. Horz H, Yimga MT, Liesack W (2001) Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl Environ Microbiol 67:4177–4185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baker PW, Futamata H, Harayama S, Watanabe K (2001) Molecular diversity of pMMO and sMMO in a TCE-contaminated aquifer during bioremediation. FEMS Microbiol Ecol 38:161–167

    Article  CAS  Google Scholar 

  39. Shigematsu T, Hanada S, Eguchi M, Kamagata Y, Kanagawa T, Kurane R (1999) Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. strains and detection of methanotrophs during in situ bioremediation. Appl Environ Microbiol 65:5198–5206

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McDonald I, Kenna E, Murrell J (1995) Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol 61:116–121

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Miguez C, Bourque D, Sealy J, Greer CW, Groleau D (1997) Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR). Microb Ecol 33:21–31

    Article  CAS  PubMed  Google Scholar 

  42. Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, Oclarit JM, Omori T (1998) Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62:1925–1931

    Article  CAS  PubMed  Google Scholar 

  43. Rahman MT, Crombie A, Chen Y, Stralis-Pavese N, Bodrossy L, Meir P, McNamara NP, Murrell JC (2011) Environmental distribution and abundance of the facultative methanotroph Methylocella. ISME J 5:1061–1066

    Article  CAS  PubMed  Google Scholar 

  44. Hung W-L, Wade WG, Chen Y, Kelly DP, Wood AP (2012) Design and evaluation of novel primers for the detection of genes encoding diverse enzymes of methylotrophy and autotrophy. Pol J Microbiol 61:11–22

    CAS  PubMed  Google Scholar 

  45. Wischer D, Kumaresan D, Johnston A, El Khawand M, Stephenson J, Hillebrand-Voiculescu AM, Chen Y, Murrell JC (2014) Bacterial metabolism of methylated amines and identification of novel methylotrophs in Movile Cave. ISME J 1–12

    Google Scholar 

  46. Chen Y (2012) Comparative genomics of methylated amine utilization by marine Roseobacter clade bacteria and development of functional gene markers (tmm, gmaS). Environ Microbiol 14:2308–2322

    Article  CAS  PubMed  Google Scholar 

  47. Baxter NJ, Scanlan J, De Marco P, Wood AP, Murrell JC (2002) Duplicate copies of genes encoding methanesulfonate monooxygenase in Marinosulfonomonas methylotropha strain TR3 and detection of methanesulfonate utilizers in the environment. Appl Environ Microbiol 68:289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moosvi SA, McDonald IR, Pearce DA, Kelly DP, Wood AP (2005) Molecular detection and isolation from Antarctica of methylotrophic bacteria able to grow with methylated sulfur compounds. Syst Appl Microbiol 28:541–554

    Article  CAS  PubMed  Google Scholar 

  49. Nadalig T, Farhan Ul Haque M, Roselli S, Schaller H, Bringel F, Vuilleumier S (2011) Detection and isolation of chloromethane-degrading bacteria from the Arabidopsis thaliana phyllosphere, and characterization of chloromethane utilization genes. FEMS Microbiol Ecol 77:438–448

    Article  CAS  PubMed  Google Scholar 

  50. Miller LG, Warner KL, Baesman SM, Oremland RS, McDonald IR, Radajewski S, Murrell JC (2004) Degradation of methyl bromide and methyl chloride in soil microcosms: use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms. Geochim Cosmochim Acta 68:3271–3283

    Article  CAS  Google Scholar 

  51. Lüke C, Frenzel P (2011) Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl Environ Microbiol 77:6305–6309

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622

    Article  CAS  PubMed  Google Scholar 

  53. Kist J, Tate RL (2013) Application of mxaF functional gene sequence to determine genetic relatedness among environmental Methylobacterium strains (PPFMs). Soil Biol Biochem 58:313–322

    Article  CAS  Google Scholar 

  54. Giovannoni SJ, Hayakawa DH, Tripp HJ, Stingl U, Givan SA, Cho J-C, Oh H-M, Kitner JB, Vergin KL, Rappé MS (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10:1771–1782

    Article  CAS  PubMed  Google Scholar 

  55. Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E, Salamov A, Grigoriev IV, Suciu D, Levine SR, Markowitz VM, Rigoutsos I, Tringe SG, Bruce DC, Richardson PM, Lidstrom ME, Chistoserdova L (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26:1029–1034

    Article  CAS  PubMed  Google Scholar 

  56. Hou S, Makarova KS, Saw JHW, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schmidt S, Christen P, Kiefer P, Vorholt JA (2010) Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology 156:2575–2586

    Article  CAS  PubMed  Google Scholar 

  58. Skovran E, Palmer AD, Rountree AM, Good NM, Lidstrom ME (2011) XoxF is required for expression of methanol dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 193:6032–6038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Keltjens JT, Pol A, Reimann J, Op den Camp HJM (2014) PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 98:6163–6183

    Article  CAS  PubMed  Google Scholar 

  60. Nakagawa T, Mitsui R, Tani A, Sasa K, Tashiro S, Iwama T, Hayakawa T, Kawai K (2012) A catalytic role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. PLoS One 7:e50480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang P, Wang F, Xu M, Xiao X (2004) Molecular phylogeny of methylotrophs in a deep-sea sediment from a tropical west Pacific Warm Pool. FEMS Microbiol Ecol 47:77–84

    Article  CAS  PubMed  Google Scholar 

  62. Kist J, Tate RL (2013) Phylogeny of bacterial methylotrophy genes reveals robustness in Methylobacterium mxaF sequences and mxa operon construction. Soil Biol Biochem 59:49–57

    Article  CAS  Google Scholar 

  63. Vorholt JA, Chistoserdova L, Stolyar SM, Thauer RK, Lidstrom ME (1999) Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181:5750–5757

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    Article  CAS  PubMed  Google Scholar 

  65. Kalyuzhnaya MG, Chistoserdova L (2005) Community-level analysis: genes encoding methanopterin-dependent enzymes. Methods Enzymol 397:443–454

    Article  CAS  PubMed  Google Scholar 

  66. Jewell T, Huston SL, Nelson DC (2008) Methylotrophy in freshwater Beggiatoa alba strains. Appl Environ Microbiol 74:5575–5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dumont MG, Lüke C, Deng Y, Frenzel P (2014) Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN. Front Microbiol 5:1–11

    Article  Google Scholar 

  68. Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5:566–582

    Article  CAS  PubMed  Google Scholar 

  69. Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692

    Article  CAS  PubMed  Google Scholar 

  70. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463

    Article  CAS  PubMed  Google Scholar 

  71. Coleman NV, Le NB, Ly MA, Ogawa HE, McCarl V, Wilson NL, Holmes AJ (2012) Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J 6:171–182

    Article  CAS  PubMed  Google Scholar 

  72. Angel R, Conrad R (2009) In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils. Environ Microbiol 11:2598–2610

    Article  CAS  PubMed  Google Scholar 

  73. Dunfield PF (2007) The soil methane sink. In: Reay DS, Hewitt N, Smith KA, Grace J (eds) Greenhouse gas sinks. CAB International, Wallingford, UK, pp 152–170

    Chapter  Google Scholar 

  74. Horz H-P, Rich V, Avrahami S, Bohannan BJM (2005) Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl Environ Microbiol 71:2642–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48:371–399

    Article  CAS  PubMed  Google Scholar 

  76. Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  PubMed  Google Scholar 

  77. Han J-I, Semrau JD (2004) Quantification of gene expression in methanotrophs by competitive reverse transcription-polymerase chain reaction. Environ Microbiol 6:388–399

    Article  CAS  PubMed  Google Scholar 

  78. Knief C, Lipski A, Dunfield PF (2003) Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69:6703–6714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kolb S (2009) The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep 1:336–346

    Article  CAS  PubMed  Google Scholar 

  80. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  PubMed  Google Scholar 

  81. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland N-K, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306

    Article  CAS  PubMed  Google Scholar 

  82. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  CAS  PubMed  Google Scholar 

  83. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878

    Article  CAS  PubMed  Google Scholar 

  84. Chistoserdov AY, McIntire WS, Mathews FS, Lidstrom ME (1994) Organization of the methylamine utilization (mau) genes in Methylophilus methylotrophus W3A1-NS. J Bacteriol 176:4073–4080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Latypova E, Yang S, Wang Y-S, Wang T, Chavkin TA, Hackett M, Schäfer H, Kalyuzhnaya MG (2010) Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5. Mol Microbiol 75:426–439

    Article  CAS  PubMed  Google Scholar 

  86. Chen Y, McAleer KL, Murrell JC (2010) Monomethylamine as a nitrogen source for a nonmethylotrophic bacterium, Agrobacterium tumefaciens. Appl Environ Microbiol 76:4102–4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Levering P, van Dijken J, Veenhuis M, Harder W (1981) Arthrobacter P1, a fast growing versatile methylotroph with amine oxidase as a key enzyme in the metabolism of methylated amines. Arch Microbiol 129:72–80

    Article  CAS  PubMed  Google Scholar 

  88. Antony CP, Kumaresan D, Ferrando L, Boden R, Moussard H, Scavino AF, Shouche YS, Murrell JC (2010) Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. ISME J 4:1470–1480

    Article  CAS  PubMed  Google Scholar 

  89. Schäfer H, Myronova N, Boden R (2010) Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J Exp Bot 61:315–334

    Article  PubMed  Google Scholar 

  90. De Bont J, van Dijken J, Harder W (1981) Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. J Gen Microbiol 127:315–323

    Google Scholar 

  91. Visscher PT, Taylor BF (1993) A new mechanism for the aerobic catabolism of dimethyl sulfide. Appl Environ Microbiol 59:3784–3789

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kelly DP, Murrell JC (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172:341–348

    Article  CAS  PubMed  Google Scholar 

  93. Leisinger T, Bader R, Hermann R, Schmid-Appert M, Vuilleumier S (1994) Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation 5:237–248

    Article  CAS  PubMed  Google Scholar 

  94. Schäfer H, Miller LG, Oremland RS, Murrell JC (2007) Bacterial cycling of methyl halides. Adv Appl Microbiol 61:307–346

    Article  PubMed  Google Scholar 

  95. Vannelli T, Studer A, Kertesz M, Leisinger T (1998) Chloromethane metabolism by Methylobacterium sp. strain CM4. Appl Environ Microbiol 64:1933–1936

    CAS  PubMed  PubMed Central  Google Scholar 

  96. McAnulla CMC, Woodall CA, McDonald IR, Studer A, Vuilleumier S, Leisinger T, Murrell JC (2001) Chloromethane utilization gene cluster from Hyphomicrobium chloromethanicum strain CM2T and development of functional gene probes to detect halomethane-degrading bacteria. Appl Environ Microbiol 67:307–316

    Article  CAS  PubMed  Google Scholar 

  97. Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, Cole JR (2013) FunGene: the functional gene pipeline and repository. Front Microbiol 4:1–14

    Article  Google Scholar 

  98. Weisman D, Yasuda M, Bowen JL (2013) FunFrame: functional gene ecological analysis pipeline. Bioinformatics 29:1212–1214

    Article  CAS  PubMed  Google Scholar 

  99. Zhang Y, Sun Y (2011) HMM-FRAME: accurate protein domain classification for metagenomic sequences containing frameshift errors. BMC Bioinformatics 12:1–10

    Article  Google Scholar 

  100. Kolb S, Stacheter A (2013) Prerequisites for amplicon pyrosequencing of microbial methanol utilizers in the environment. Front Microbiol 4:1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Dumont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Dumont, M.G. (2014). Primers: Functional Marker Genes for Methylotrophs and Methanotrophs. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2014_23

Download citation

  • DOI: https://doi.org/10.1007/8623_2014_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50427-7

  • Online ISBN: 978-3-662-50428-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics