Skip to main content

Protocols for Structural and Functional Analysis of Particulate Methane Monooxygenase from Methylocystis Species Strain Rockwell (ATCC 49242)

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 693 Accesses

Abstract

Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that consume methane as their sole carbon and energy source. In order to understand the biochemistry of methane oxidation, pMMO must be isolated from the native organism. This chapter describes protocols for growth, isolation, and characterization of pMMO from Methylocystis species strain Rockwell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Culpepper MA, Rosenzweig AC (2012) Architecture and active site of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 47:483–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crowther GJ et al (2008) Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 190:5057–5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Semrau JD (2011) Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol 2:209

    Article  PubMed  PubMed Central  Google Scholar 

  4. Conrado RJ, Gonzalez R (2014) Envisioning the bioconversion of methane to liquid fuels. Science 343:621–623

    Article  CAS  PubMed  Google Scholar 

  5. Stein LY et al (2011) Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. strain Rockwell (ATCC 49242). J Bacteriol 193:2668–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nyerges G, Stein LY (2009) Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett 297:131–136

    Article  CAS  PubMed  Google Scholar 

  7. Hakemian AS et al (2008) The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry 47:6793–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith SM et al (2011) Metal reconstitution of particulate methane monooxygenase and heterologous expression of the pmoB subunit. Methods Enzymol 495:195–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stanley SH et al (1983) Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane oxidizing organisms: studies in batch and continuous cultures. Biotechnol Lett 5:487–492

    Article  CAS  Google Scholar 

  10. Choi DW et al (2003) The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH:quinone oxidoreductase complex from Methylococcus capsulatus (Bath). J Bacteriol 185:5755–5764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prior SD, Dalton H (1985) The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J Gen Microbiol 131:155–163

    CAS  Google Scholar 

  12. Kenney GE, Rosenzweig AC (2013) Genome mining for methanobactins. BMC Biol 11:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Semrau JD et al (2013) Methanobactin and MmoD work in concert to act as the ‘copper-switch’ in methanotrophs. Environ Microbiol 15:3077–3086

    CAS  PubMed  Google Scholar 

  14. Rosenzweig AC et al (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–543

    Article  CAS  PubMed  Google Scholar 

  15. Balasubramanian R et al (2010) Oxidation of methane by a biological dicopper centre. Nature 465:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Culpepper MA et al (2012) Evidence for oxygen binding at the active site of particulate methane monooxygenase. J Am Chem Soc 134:7640–7643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182

    Article  CAS  PubMed  Google Scholar 

  18. Zahn JA, DiSpirito AA (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178:1018–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu SS et al (2003) Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J Bacteriol 185:5915–5924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sirajuddin S et al (2014) Effects of zinc on particulate methane monooxygenase activity and structure. J Biol Chem 289: 21782–21794

    Article  PubMed  PubMed Central  Google Scholar 

  21. Smith DD, Dalton H (1989) Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath). Eur J Biochem 182:667–671

    Article  CAS  PubMed  Google Scholar 

  22. Smith SM et al (2011) Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. Biochemistry 50:10231–10240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burrows KJ et al (1984) Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. J Gen Microbiol 130:3327–3333

    CAS  Google Scholar 

  24. Elliott SJ et al (1997) Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Am Chem Soc 119:9949–9955

    Article  CAS  Google Scholar 

  25. Miyaji A et al (2011) The substrate binding cavity of particulate methane monooxygenase from Methylosinus trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol. Biotechnol Lett 33:2241–2246

    Article  CAS  PubMed  Google Scholar 

  26. Cook SA, Shiemke AK (2002) Evidence that a type-2 NADH:quinone oxidoreductase mediates electron transfer to particulate methane monooxygenase in Methylococcus capsulatus. Arch Biochem Biophys 398:32–40

    Article  CAS  PubMed  Google Scholar 

  27. Shiemke AK et al (2004) Inhibition of membrane-bound methane monooxygenase and ammonia monooxygenase by diphenyliodonium: implications for electron transfer. J Bacteriol 186:928–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shiemke AK et al (1995) Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron donors. Arch Biochem Biophys 321:421–428

    Article  CAS  PubMed  Google Scholar 

  29. Chen KH et al (2012) Bacteriohemerythrin bolsters the activity of the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath). J Inorg Biochem 111:10–17

    Article  CAS  PubMed  Google Scholar 

  30. Takeguchi M, Okura I (2000) Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal Surv Jpn 4:51–63

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy C. Rosenzweig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Sirajuddin, S., Rosenzweig, A.C. (2014). Protocols for Structural and Functional Analysis of Particulate Methane Monooxygenase from Methylocystis Species Strain Rockwell (ATCC 49242). In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols . Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2014_22

Download citation

  • DOI: https://doi.org/10.1007/8623_2014_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49135-5

  • Online ISBN: 978-3-662-49137-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics