Advertisement

Bacterial Solvent Responses and Tolerance: CisTrans Isomerization

  • Hermann J. HeipieperEmail author
  • Nancy Hachicho
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The protocol describes the application of the membrane adaptive mechanism of Gram-negative bacteria belonging to the genera Pseudomonas and Vibrio, the isomerization of cis- to trans-unsaturated membrane fatty acids as a tool for the measurement of the toxicity of membrane-disturbing compounds. The degree of isomerization directly depends on the toxicity and concentration of membrane-affecting agents. Synthesis of trans fatty acids is apparent within 30 min after addition of stressors by direct isomerization of the respective cis configuration of the double bond without shifting the position. The purpose of the conversion of the cis configuration to trans is apparently a rapid decrease of the membrane fluidity to rising temperature or the presence of toxic organic hydrocarbons. Therefore, for those bacteria in which this mechanism is present, it offers the possibilities to use the trans/cis ratio of unsaturated fatty acids as an elegant, reliable, and rapid bioindicator for membrane stress in experimental setups.

Keywords:

Bacterial stress response Cis/trans isomerization Membrane fatty acids Unsaturated fatty acids 

References

  1. 1.
    Okuyama H, Okajima N, Sasaki S, Higashi S, Murata N (1991) The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim Biophys Acta 1084:13–20CrossRefPubMedGoogle Scholar
  2. 2.
    Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852PubMedPubMedCentralGoogle Scholar
  3. 3.
    Morita N, Shibahara A, Yamamoto K, Shinkai K, Kajimoto G, Okuyama H (1993) Evidence for cis-trans isomerization of a double bond in the fatty acids of the psychrophilic bacterium Vibrio sp. strain ABE-1. J Bacteriol 175:916–918CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Diefenbach R, Heipieper HJ, Keweloh H (1992) The conversion of cis- into trans- unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl Microbiol Biotechnol 38:382–387CrossRefGoogle Scholar
  5. 5.
    Heipieper HJ, de Bont JAM (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol 60:4440–4444PubMedPubMedCentralGoogle Scholar
  6. 6.
    Kiran MD, Annapoorni S, Suzuki I, Murata N, Shivaji S (2005) Cis-trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117CrossRefPubMedGoogle Scholar
  7. 7.
    Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245CrossRefPubMedGoogle Scholar
  8. 8.
    Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7CrossRefPubMedGoogle Scholar
  9. 9.
    Kiran MD et al (2004) Psychrophilic Pseudomonas syringae requires trans-monounsaturated fatty acid for growth at higher temperature. Extremophiles 8:401–410CrossRefPubMedGoogle Scholar
  10. 10.
    Ingram LO (1977) Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol 33:1233–1236PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kabelitz N, Santos PM, Heipieper HJ (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 220:223–227CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233CrossRefPubMedGoogle Scholar
  13. 13.
    MacDonald PM, Sykes BD, McElhaney RN (1985) Fluorine-19 nuclear magnetic resonance studies of lipid fatty acyl chain order and dynamics in Acholeplasma laidlawii b membranes. a direct comparison of the effects of cis and trans cyclopropane ring and double-bond substituents on orientational order. Biochemistry 24:4651–4659CrossRefPubMedGoogle Scholar
  14. 14.
    Roach C, Feller SE, Ward JA, Shaikh SR, Zerouga M, Stillwell W (2004) Comparison of cis and trans fatty acid containing phosphatidylcholines on membrane properties. Biochemistry 43:6344CrossRefPubMedGoogle Scholar
  15. 15.
    Heipieper HJ, Loffeld B, Keweloh H, de Bont JAM (1995) The cis/trans isomerization of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30:1041–1051CrossRefGoogle Scholar
  16. 16.
    Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  17. 17.
    Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238CrossRefPubMedGoogle Scholar
  18. 18.
    Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415CrossRefGoogle Scholar
  19. 19.
    Neumann G et al (2005) Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl Environ Microbiol 71:6606–6612CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hachicho N, Hoffmann P, Ahlert K, Heipieper HJ (2014) Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiol Lett 355:71–77CrossRefPubMedGoogle Scholar
  21. 21.
    Heipieper HJ, Meulenbeld G, VanOirschot Q, De Bont JAM (1996) Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Appl Environ Microbiol 62:2773–2777PubMedPubMedCentralGoogle Scholar
  22. 22.
    Isken S, Santos P, de Bont JAM (1997) Effect of solvent adaptation on the antibiotic resistance in Pseudomonas putida S12. Appl Microbiol Biotechnol 48:642–647CrossRefGoogle Scholar
  23. 23.
    Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1:191–198CrossRefPubMedGoogle Scholar
  24. 24.
    Ramos JL, Gallegos MT, Marques S, Ramos-Gonzalez MI, Espinosa-Urgel M, Segura A (2001) Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol 4:166–171CrossRefPubMedGoogle Scholar
  25. 25.
    Ramos JL et al (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768CrossRefPubMedGoogle Scholar
  26. 26.
    Loffler C, Eberlein C, Mausezahl I, Kappelmeyer U, Heipieper HJ (2010) Physiological evidence for the presence of a cis-trans isomerase of unsaturated fatty acids in Methylococcus capsulatus Bath to adapt to the presence of toxic organic compounds. FEMS Microbiol Lett 308:68–75CrossRefPubMedGoogle Scholar
  27. 27.
    Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753CrossRefPubMedGoogle Scholar
  28. 28.
    Naether DJ et al (2013) Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach. Appl Environ Microbiol 79:4282–4293CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hartig C, Loffhagen N, Harms H (2005) Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida. Appl Environ Microbiol 71:1915–1922CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefPubMedGoogle Scholar
  31. 31.
    Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608PubMedGoogle Scholar
  32. 32.
    Weber FJ, Isken S, de Bont JA (1994) Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiology 140:2013–2017CrossRefPubMedGoogle Scholar
  33. 33.
    Hage A, Schoemaker HE, Wever R, Zennaro E, Heipieper HJ (2001) Determination of the toxicity of several aromatic carbonylic compounds and their reduced derivatives on Phanerochaete chrysosporium using a Pseudomonas putida test system. Biotechnol Bioeng 73:69–73CrossRefPubMedGoogle Scholar
  34. 34.
    Neumann G, Kabelitz N, Heipieper HJ (2003) The regulation of the cis-trans isomerase (cti) of unsaturated fatty acids in Pseudomonas putida: correlation between cti activity and K+-uptake systems. Eur J Lipid Sci Technol 105:585–589CrossRefGoogle Scholar
  35. 35.
    Guckert JB, Hood MA, White DC (1986) Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol 52:794–801PubMedPubMedCentralGoogle Scholar
  36. 36.
    Fischer J, Schauer F, Heipieper HJ (2010) The trans/cis ratio of unsaturated fatty acids is not applicable as biomarker for environmental stress in case of long-term contaminated habitats. Appl Microbiol Biotechnol 87:365–371CrossRefPubMedGoogle Scholar
  37. 37.
    Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research—UFZLeipzigGermany

Personalised recommendations