Skip to main content

Cultivation of Methanotrophs

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Aerobic methanotrophs are metabolically unique bacteria that are able to utilize methane as a sole source of energy. The selective approach to enrich methanotrophs therefore employs mineral media with methane added as a growth substrate. The composition of a mineral medium and the incubation conditions strongly determine the outcome of the enrichment procedure. Adjusting medium composition to mirror the conditions of a natural habitat is a key to isolating environmentally relevant organisms. Methane-oxidizing enrichments typically contain many non-methanotrophic bacteria growing on by-products of methanotrophs or on medium contaminants, so obtaining isolated cultures is a time-consuming process that involves repeated series of plating on solid media, dilution–extinction in liquid media, and other purification procedures. Purity tests represent an important component of the isolation procedure. Final steps include registration of growth dynamics on methane and molecular identification of isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Söhngen NL (1906) Über Bakterien, welche Methan als Kohlenstoffnahrung and Energiequelle gebrauchen. Zentralbl Bakteriol Parasitik Abt I 15:513–517

    Google Scholar 

  2. Stein LY, Roy R, Dunfield PF (2012) Aerobic methanotrophy and nitrification: processes and connections. In: Battista J et al (eds) Encyclopedia of life sciences. Wiley, Chichester, www.els.net

    Google Scholar 

  3. Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15:2395–2417

    Article  CAS  PubMed  Google Scholar 

  4. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland N-K, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306

    Article  CAS  PubMed  Google Scholar 

  5. Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, Grasby SE, Strack M, Dunfield PF (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16:1867–1878

    Article  CAS  PubMed  Google Scholar 

  6. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  PubMed  Google Scholar 

  7. Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    Article  CAS  PubMed  Google Scholar 

  8. Dedysh SN, Panikov NS, Tiedje JM (1998) Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Environ Microbiol 64:922–929

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dedysh SN (2009) Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiology 78:655–669

    Article  CAS  Google Scholar 

  10. Kip N, Ouyang W, van Winden J, Raghoebarsing A, van Niftrik L, Pol A, Pan Y, Bodrossy L, van Donselaar EG, Reichart G-J, Jetten MSM, Sinninghe Damsté JS, Op den Camp HJM (2011) Detection, isolation and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 77:5643–5654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khmelenina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE, Trotsenko YA (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 35:257–261

    Article  CAS  Google Scholar 

  12. Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826

    Article  CAS  PubMed  Google Scholar 

  13. Sorokin DY, Jones BE, Kuenen GJ (2000) An obligately methylotrophic, methane-oxidizing Methylomicrobium species from highly alkaline environment. Extremophiles 4:145–155

    Article  CAS  PubMed  Google Scholar 

  14. Bowman J (2006) The methanotrophs – the families Methylococcaceae and Methylocystaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, 3rd ed, vol 5. Springer, New York, рp 266–289

    Google Scholar 

  15. Heyer J, Galchenko V, Dunfield P (2002) Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 148:2831–2846

    Article  CAS  PubMed  Google Scholar 

  16. Stott BM, Crowe MA, Mountain BW, Smirnova AV, Hou S, Alam M, Dunfield PF (2008) isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 10:2030–2041

    Article  CAS  PubMed  Google Scholar 

  17. Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp HJM (2013) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264

    Article  PubMed  Google Scholar 

  18. Lidstrom ME (1988) Isolation and characterization of marine methanotrophs. Antonie Van Leeuwenhoek 54:189–199

    Article  CAS  PubMed  Google Scholar 

  19. Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov. a novel methanotrophic bacterium isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239

    Article  CAS  PubMed  Google Scholar 

  20. Bothe HM, Møller-Jensen K, Mergel A, Larsen J, Jørgensen C, Bothe H, Jørgensen L (2002) Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Appl Microbiol Biotechnol 59:33–39

    Article  CAS  PubMed  Google Scholar 

  21. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Nagana Gowda GA, Raftery D, Fu Y, Bringel F, Vuilleumier S, Beck DAC, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785. doi:10.1038/ncomms3785

    Article  CAS  PubMed  Google Scholar 

  22. Wilkinson T, Topiwala HH, Hamer G (1974) Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol Bioeng 16:41–59

    Article  CAS  PubMed  Google Scholar 

  23. Bussmann I, Rahalkar M, Schink B (2006) Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol Ecol 56:331–344

    Article  CAS  PubMed  Google Scholar 

  24. Koch IH, Gich F, Dunfield PF, Overmann J (2008) Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., two novel acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58:1114–1122

    Article  CAS  PubMed  Google Scholar 

  25. Dedysh SN, Kulichevskaya IS, Serkebaeva YM, Mityaeva MA, Sorokin VV, Suzina NE, Rijpstra WI, Damste JS (2012) Bryocella elongata gen. nov., sp. nov., a novel member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture and emended description of Edaphobacter aggregans Koch et al. 2008. Int J Syst Evol Microbiol 62:654–664

    Article  CAS  PubMed  Google Scholar 

  26. Linton JD, Buckee JC (1977) Interactions in a methane-utilizing mixed bacterial culture in a chemostat. J Gen Microbiol 101:219–225

    Article  Google Scholar 

  27. McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315

    Article  CAS  PubMed  Google Scholar 

  28. Sharp CE, Stott MB, Dunfield PF (2012) Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing. Front Microbiol 3:303. doi:10.3389/fmicb. 2012.00303

    Article  PubMed  PubMed Central  Google Scholar 

  29. Auman AJ, Stolyar S, Costello AM, Lidstrom ME (2000) Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Svenning MM, Wartiainen I, Hestnes AG, Binnerup SJ (2003) Isolation of methane oxidizing bacteria from soil by use of a soil substrate membrane system. FEMS Microbiol Ecol 44:347–354

    Article  CAS  PubMed  Google Scholar 

  31. Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220

    Article  CAS  Google Scholar 

  32. Hoefman S, van der Ha D, Boon N, Vandamme P, de Vos P, Heylen K (2014) Customized media based on miniaturized screening improve growth rate and cell yield of methane-oxidizing bacteria of the genus Methylomonas. Antonie Van Leeuwenhoek 105:353–366

    Article  CAS  PubMed  Google Scholar 

  33. Dedysh SN, Dunfield PF (2011) Facultative and obligate methanotrophs: how to identify and differentiate them. In: Rosenzweig AC, Ragsdale SW (eds) Methods in enzymology, vol 495. Academic, Burlington, pp 31–44

    Google Scholar 

  34. Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 63. Elsevier, pp 183–229

    Google Scholar 

  35. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs K-J, Stunnenberg HG, Jetten MSM, Op den Camp HJM (2011) Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vorob’ev AV, Dedysh SN (2008) Inadequacy of enrichment culture technique for assessing the structure of methanotrophic communities in peat soil. Microbiology 77:504–507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana N. Dedysh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Dedysh, S.N., Dunfield, P.F. (2014). Cultivation of Methanotrophs. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2014_14

Download citation

  • DOI: https://doi.org/10.1007/8623_2014_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45178-6

  • Online ISBN: 978-3-662-45179-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics