Skip to main content

Protocol for the Measurement of Hydrocarbon Transport in Bacteria

  • Protocol
  • First Online:
  • 592 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Due to the hydrophobicity, volatility, and relatively low aqueous solubility of aliphatic and aromatic hydrocarbons, transport of these chemicals by bacteria has not been extensively studied. These issues make transport assays difficult to carry out, and as a result, strong evidence for the active transport of hydrocarbons is lacking. Here we describe a detailed protocol for the measurement of hydrocarbon transport in bacteria and suggest key equipment and control experiments required to obtain convincing results.

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sikkema J, De Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bugg T, Foght JM, Pickard MA, Gray MR (2000) Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl Environ Microbiol 66:5387–5392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Isken S, de Bont JA (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    Article  CAS  PubMed  Google Scholar 

  4. Kieboom J, Dennis JJ, de Bont JA, Zylstra GJ (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91

    Article  CAS  PubMed  Google Scholar 

  5. van den Berg B (2010) Going forward laterally: transmembrane passage of hydrophobic molecules through protein channel walls. ChemBioChem 11:1339–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belchik SM, Schaeffer SM, Hasenoehrl S, Xun L (2010) A beta-barrel outer membrane protein facilitates cellular uptake of polychlorophenols in Cupriavidus necator. Biodegradation 21:431–9

    Article  CAS  PubMed  Google Scholar 

  7. Hearn EM, Patel DR, van den Berg B (2008) Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation. Proc Natl Acad Sci U S A 105:8601–8606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kahng H-Y, Byrne AM, Olsen RH, Kukor JJ (2000) Characterization and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. J Bacteriol 182:1232–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kasai Y, Inoue J, Harayama S (2001) The TOL plasmid pWWO xylN gene product from Pseudomonas putida is involved in m-xylene uptake. J Bacteriol 183:6662–6666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mooney A, O’Leary ND, Dobson AD (2006) Cloning and functional characterization of the styE gene involved in styrene transport in Pseudomonas putida CA-3. Appl Environ Microbiol 72:1302–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neher TM, Lueking DR (2009) Pseudomonas fluorescens ompW: plasmid localization and requirement for naphthalene uptake. Can J Microbiol 55:553–563

    Article  CAS  PubMed  Google Scholar 

  12. van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    Article  PubMed  Google Scholar 

  13. Wang Y, Rawlings M, Gibson DT, Labbé D, Bergeron H, Brousseau R, Lau PC (1995) Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol Gen Genet 246:570–579

    Article  CAS  PubMed  Google Scholar 

  14. Calvillo YM, Alexander M (1996) Mechanism of microbial biphenyl sorbed to polyacrylic beads. Appl Microbiol Biotechnol 45:383–390

    Article  CAS  PubMed  Google Scholar 

  15. Feng Y, Park J-H, Voice TC, Boyd SA (2000) Bioavailability of soil-sorbed biphenyl to bacteria. Environ Sci Technol 10:1977–1984

    Article  CAS  Google Scholar 

  16. Kim IS, Lee H, Trevors JT (2001) Effects of 2,2′,5,5′-tetrachlorobiphenyl and biphenyl on cell membranes of Ralstonia eutropha H850. FEMS Microbiol Lett 200:17–24

    CAS  PubMed  Google Scholar 

  17. Master ER, McKinlay JJ, Stewart GR, Mohn WW (2005) Biphenyl uptake by psychrotolerant Pseudomonas sp. strain Cam-1 and mesophilic Burkholderia sp. strain LB400. Can J Microbiol 51:399–404

    Article  CAS  PubMed  Google Scholar 

  18. Harwood CS, Gibson J (1986) Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. J Bacteriol 165:504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chae JC, Zylstra GJ (2006) 4-Chlorobenzoate uptake in Comamonas sp. strain DJ-12 is mediated by a tripartite ATP-independent periplasmic transporter. J Bacteriol 188:8407–8412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Collier LS, Nichols NN, Neidle EL (1997) benK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. J Bacteriol 179:5943–5946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D’Argenio DA, Segura A, Coco WM, Bunz PV, Ornston LN (1999) The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by overlapping specificity of VanK. J Bacteriol 181:3505–3515

    PubMed  PubMed Central  Google Scholar 

  22. Ledger T, Aceituno F, Gonzalez B (2009) 3-Chlorobenzoate is taken up by a chromosomally encoded transport system in Cupriavidus necator JMP134. Microbiology 155:2757–2765

    Article  CAS  PubMed  Google Scholar 

  23. Leveau JH, Zehnder AJ, van der Meer JR (1998) The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J Bacteriol 180:2237–2243

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nichols NN, Harwood CS (1997) PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol 179:5056–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahmed S, Booth IR (1982) The use of valinomycin, nigericin and trichlorocarbanilide in control of the protonmotive force in Escherichia coli cells. Biochem J 212:105–112

    Article  Google Scholar 

  26. Bateman JN, Speer B, Feduik L, Hartline RA (1986) Naphthalene association and uptake in Pseudomonas putida. J Bacteriol 166:155–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ditty JL, Nichols NN, Parales RE (2010) Measurement of hydrocarbon transport in bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Heidelberg, pp 4214–4221

    Google Scholar 

  28. Heytler PG (1979) Uncouplers of oxidative phosphorylation. Method Enzymol 55:462–442

    Article  CAS  Google Scholar 

  29. Joshi AK, Ahmed S, Ferro-Luzzi Ames G (1989) Energy coupling in bacterial periplasmic transport systems: studies in intact Escherichia coli cells. J Biol Chem 264:2126–2133

    CAS  PubMed  Google Scholar 

  30. Kashket ER (1985) The proton motive force in bacteria: a critical assessment of methods. Ann Rev Microbiol 39:219–242

    Article  CAS  Google Scholar 

  31. Linnett PE, Beechey RB (1979) Inhibitors of the ATP synthethase system. Methods Enzymol 55:472–518

    Article  CAS  PubMed  Google Scholar 

  32. Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB (2010) Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors. Biochem J 432:399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278:19127–19133

    Article  CAS  PubMed  Google Scholar 

  34. Sedlak M, Ho NW (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684

    Article  CAS  PubMed  Google Scholar 

  35. Ausubel FM, Brent R, Kingston RE et al (1993) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  38. Klingenberg M, Pfaff E (1977) Means of terminating reactions. Methods Enzymol 10:680–684

    Article  Google Scholar 

  39. Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    Article  CAS  Google Scholar 

  40. Qian Y, Posch T, Schmidt TC (2011) Sorption of polycyclic aromatic hydrocarbons (PAHs) on glass surfaces. Chemosphere 82:859–865

    Article  CAS  PubMed  Google Scholar 

  41. Bagnara AS, Finch LR (1972) Quantitative extraction and estimation of intracellular nucleoside triphosphates of Escherichia coli. Anal Biochem 45:24–34

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca E. Parales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Ditty, J.L., Nichols, N.N., Parales, R.E. (2014). Protocol for the Measurement of Hydrocarbon Transport in Bacteria. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2014_11

Download citation

  • DOI: https://doi.org/10.1007/8623_2014_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49138-6

  • Online ISBN: 978-3-662-49140-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics