Protocol for the Measurement of Hydrocarbon Transport in Bacteria

  • Jayna L. Ditty
  • Nancy N. Nichols
  • Rebecca E. ParalesEmail author
Part of the Springer Protocols Handbooks book series (SPH)


Due to the hydrophobicity, volatility, and relatively low aqueous solubility of aliphatic and aromatic hydrocarbons, transport of these chemicals by bacteria has not been extensively studied. These issues make transport assays difficult to carry out, and as a result, strong evidence for the active transport of hydrocarbons is lacking. Here we describe a detailed protocol for the measurement of hydrocarbon transport in bacteria and suggest key equipment and control experiments required to obtain convincing results.


Aromatic hydrocarbons Metabolic inhibitors Radiolabeled substrates Specific activity Transport 


  1. 1.
    Sikkema J, De Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  2. 2.
    Bugg T, Foght JM, Pickard MA, Gray MR (2000) Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl Environ Microbiol 66:5387–5392CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Isken S, de Bont JA (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238CrossRefPubMedGoogle Scholar
  4. 4.
    Kieboom J, Dennis JJ, de Bont JA, Zylstra GJ (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91CrossRefPubMedGoogle Scholar
  5. 5.
    van den Berg B (2010) Going forward laterally: transmembrane passage of hydrophobic molecules through protein channel walls. ChemBioChem 11:1339–1343CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Belchik SM, Schaeffer SM, Hasenoehrl S, Xun L (2010) A beta-barrel outer membrane protein facilitates cellular uptake of polychlorophenols in Cupriavidus necator. Biodegradation 21:431–9CrossRefPubMedGoogle Scholar
  7. 7.
    Hearn EM, Patel DR, van den Berg B (2008) Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation. Proc Natl Acad Sci U S A 105:8601–8606CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kahng H-Y, Byrne AM, Olsen RH, Kukor JJ (2000) Characterization and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. J Bacteriol 182:1232–1242CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kasai Y, Inoue J, Harayama S (2001) The TOL plasmid pWWO xylN gene product from Pseudomonas putida is involved in m-xylene uptake. J Bacteriol 183:6662–6666CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mooney A, O’Leary ND, Dobson AD (2006) Cloning and functional characterization of the styE gene involved in styrene transport in Pseudomonas putida CA-3. Appl Environ Microbiol 72:1302–1309CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Neher TM, Lueking DR (2009) Pseudomonas fluorescens ompW: plasmid localization and requirement for naphthalene uptake. Can J Microbiol 55:553–563CrossRefPubMedGoogle Scholar
  12. 12.
    van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630CrossRefPubMedGoogle Scholar
  13. 13.
    Wang Y, Rawlings M, Gibson DT, Labbé D, Bergeron H, Brousseau R, Lau PC (1995) Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol Gen Genet 246:570–579CrossRefPubMedGoogle Scholar
  14. 14.
    Calvillo YM, Alexander M (1996) Mechanism of microbial biphenyl sorbed to polyacrylic beads. Appl Microbiol Biotechnol 45:383–390CrossRefPubMedGoogle Scholar
  15. 15.
    Feng Y, Park J-H, Voice TC, Boyd SA (2000) Bioavailability of soil-sorbed biphenyl to bacteria. Environ Sci Technol 10:1977–1984CrossRefGoogle Scholar
  16. 16.
    Kim IS, Lee H, Trevors JT (2001) Effects of 2,2′,5,5′-tetrachlorobiphenyl and biphenyl on cell membranes of Ralstonia eutropha H850. FEMS Microbiol Lett 200:17–24PubMedGoogle Scholar
  17. 17.
    Master ER, McKinlay JJ, Stewart GR, Mohn WW (2005) Biphenyl uptake by psychrotolerant Pseudomonas sp. strain Cam-1 and mesophilic Burkholderia sp. strain LB400. Can J Microbiol 51:399–404CrossRefPubMedGoogle Scholar
  18. 18.
    Harwood CS, Gibson J (1986) Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. J Bacteriol 165:504–509CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chae JC, Zylstra GJ (2006) 4-Chlorobenzoate uptake in Comamonas sp. strain DJ-12 is mediated by a tripartite ATP-independent periplasmic transporter. J Bacteriol 188:8407–8412CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Collier LS, Nichols NN, Neidle EL (1997) benK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. J Bacteriol 179:5943–5946CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    D’Argenio DA, Segura A, Coco WM, Bunz PV, Ornston LN (1999) The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by overlapping specificity of VanK. J Bacteriol 181:3505–3515PubMedPubMedCentralGoogle Scholar
  22. 22.
    Ledger T, Aceituno F, Gonzalez B (2009) 3-Chlorobenzoate is taken up by a chromosomally encoded transport system in Cupriavidus necator JMP134. Microbiology 155:2757–2765CrossRefPubMedGoogle Scholar
  23. 23.
    Leveau JH, Zehnder AJ, van der Meer JR (1998) The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J Bacteriol 180:2237–2243PubMedPubMedCentralGoogle Scholar
  24. 24.
    Nichols NN, Harwood CS (1997) PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol 179:5056–5061CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ahmed S, Booth IR (1982) The use of valinomycin, nigericin and trichlorocarbanilide in control of the protonmotive force in Escherichia coli cells. Biochem J 212:105–112CrossRefGoogle Scholar
  26. 26.
    Bateman JN, Speer B, Feduik L, Hartline RA (1986) Naphthalene association and uptake in Pseudomonas putida. J Bacteriol 166:155–161CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ditty JL, Nichols NN, Parales RE (2010) Measurement of hydrocarbon transport in bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Heidelberg, pp 4214–4221Google Scholar
  28. 28.
    Heytler PG (1979) Uncouplers of oxidative phosphorylation. Method Enzymol 55:462–442CrossRefGoogle Scholar
  29. 29.
    Joshi AK, Ahmed S, Ferro-Luzzi Ames G (1989) Energy coupling in bacterial periplasmic transport systems: studies in intact Escherichia coli cells. J Biol Chem 264:2126–2133PubMedGoogle Scholar
  30. 30.
    Kashket ER (1985) The proton motive force in bacteria: a critical assessment of methods. Ann Rev Microbiol 39:219–242CrossRefGoogle Scholar
  31. 31.
    Linnett PE, Beechey RB (1979) Inhibitors of the ATP synthethase system. Methods Enzymol 55:472–518CrossRefPubMedGoogle Scholar
  32. 32.
    Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB (2010) Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors. Biochem J 432:399–406CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278:19127–19133CrossRefPubMedGoogle Scholar
  34. 34.
    Sedlak M, Ho NW (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684CrossRefPubMedGoogle Scholar
  35. 35.
    Ausubel FM, Brent R, Kingston RE et al (1993) Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  36. 36.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  37. 37.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  38. 38.
    Klingenberg M, Pfaff E (1977) Means of terminating reactions. Methods Enzymol 10:680–684CrossRefGoogle Scholar
  39. 39.
    Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417CrossRefGoogle Scholar
  40. 40.
    Qian Y, Posch T, Schmidt TC (2011) Sorption of polycyclic aromatic hydrocarbons (PAHs) on glass surfaces. Chemosphere 82:859–865CrossRefPubMedGoogle Scholar
  41. 41.
    Bagnara AS, Finch LR (1972) Quantitative extraction and estimation of intracellular nucleoside triphosphates of Escherichia coli. Anal Biochem 45:24–34CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jayna L. Ditty
    • 1
  • Nancy N. Nichols
    • 2
  • Rebecca E. Parales
    • 3
    Email author
  1. 1.Department of BiologyUniversity of St. ThomasSt. PaulUSA
  2. 2.U.S. Department of AgricultureNational Center for Agricultural Utilization Research, Agricultural Research ServicePeoriaUSA
  3. 3.Department of Microbiology and Molecular GeneticsThe University of CaliforniaDavisUSA

Personalised recommendations