Skip to main content

A Practical Guide to Functional Magnetic Resonance Imaging with Simultaneous Eye Tracking for Cognitive Neuroimaging Research

  • Protocol
  • First Online:
Spatial Learning and Attention Guidance

Part of the book series: Neuromethods ((NM,volume 151))

Abstract

The simultaneous acquisition of functional magnetic resonance imaging (fMRI) with in-scanner eye tracking promises to combine the advantages of full-brain coverage of brain activity measurements with a fast and unobtrusive capture of eye movement behavior and attentional deployment. Despite its applicability to a wide variety of research questions, ranging from investigations of gaze control and attention guidance to the use of eye movement events as a response modality for gaze-contingent fMRI experiments, only few studies employ this kind of data acquisition. In this chapter we identify technical challenges, describe all necessary components and procedures for conducting such a study, and give practical advice on how these can be integrated in a common MRI laboratory setup. The chapter concludes with notes on the analysis of such datasets and summarizes key data properties and their implications of a joint analysis of fMRI and eye tracking data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ort E et al (2019) The role of proactive and reactive cognitive control for target selection in multiple-target search. BioRxiv:559500. https://doi.org/10.1101/559500

  2. Geringswald F, Baumgartner F, Pollmann S (2012) Simulated loss of foveal vision eliminates visual search advantage in repeated displays. Front Hum Neurosci 6:134. https://doi.org/10.3389/fnhum.2012.00134

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hansen DW, Ji Q (2010) In the eye of the beholder: a survey of models for eyes and gaze. IEEE Trans Pattern Anal Mach Intell 32:478–500

    Article  Google Scholar 

  4. Van der Stigchel S, Meeter M, Theeuwes J (2006) Eye movement trajectories and what they tell us. Neurosci Biobehav Rev 30(5):666–679

    Article  Google Scholar 

  5. Theeuwes J, Belopolsky A, Olivers CN (2009) Interactions between working memory, attention and eye movements. Acta Psychol 132(2):106–114

    Article  Google Scholar 

  6. Van Gerven M et al (2004) Memory load and the cognitive pupillary response in aging. Psychophysiology 41:167–174

    Article  Google Scholar 

  7. Mathôt S et al (2015) Large pupils predict goal-driven eye movements. J Exp Psychol Gen 144(3):513–521. https://doi.org/10.1037/a0039168

    Article  PubMed  Google Scholar 

  8. Lean Y, Shan F (2011) Brief review on physiological and biochemical evaluations of human mental workload. Hum Factors Man 22(3):177–187

    Article  Google Scholar 

  9. Gordon PC et al (2006) Similarity-based interference during language comprehension: evidence from eye tracking during reading. Exp Psychol Learn Mem Cogn 32(6):1304–1321

    Article  Google Scholar 

  10. Rayner K (2009) Eye movements and attention in reading, scene perception, and visual search. Q J Exp Psychol (Hove) 62(8):1457–1506

    Article  Google Scholar 

  11. Peitek N et al (2018) Simultaneous measurement of program comprehension with fMRI and eye tracking: a case study. In: Proceedings of the international symposium of empirical software engineering and measurement (ESEM). ACM, New York, pp 24:1–24:10

    Google Scholar 

  12. Henderson JM (1997) Transsaccadic memory and integration during real-world object perception. Psychol Sci 8(1):51–55

    Article  Google Scholar 

  13. Mathôt S, Theeuwes J (2011) Visual attention and stability. Philos Trans R Soc Lond Ser B Biol Sci 366(1564):516–527. https://doi.org/10.1098/rstb.2010.0187

    Article  Google Scholar 

  14. Hanke M et al (2016) A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation. Sci Data 3:160092

    Article  Google Scholar 

  15. Holmqvist K et al (2011) Eye tracking: a comprehensive guide to methods and measures. OUP, Oxford

    Google Scholar 

  16. Richlan F et al (2013) A new high-speed visual stimulation method for gaze-contingent eye movement and brain activity studies. Front Syst Neurosci 7:24. https://doi.org/10.3389/fnsys.2013.00024

    Article  PubMed  PubMed Central  Google Scholar 

  17. Andersson R et al (2017) One algorithm to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms. Behav Res Methods 49(2):616–637. https://doi.org/10.3758/s13428-016-0738-9

    Article  PubMed  Google Scholar 

  18. Dalmaijer ES, Mathôt S, Van der Stigchel S (2013) PyGaze: an open-source, crossplatform toolbox for minimal-effort programming of eyetracking experiments. Behav Res Methods 46:913–921. https://doi.org/10.3758/s13428-013-0422-2

    Article  Google Scholar 

  19. Mathôt S, Schreij D, Theeuwes J (2012) OpenSesame: an open-source, graphical experiment builder for the social sciences. Behav Res Methods 44:314–324. https://doi.org/10.3758/s13428-011-0168-7

    Article  PubMed  Google Scholar 

  20. Dar AH, Wagner AS, Hanke M (2019) REMoDNaV: robust eye movement detection for natural viewing. bioRxiv:619254. https://doi.org/10.1101/619254

  21. Bahill AT, Clark MR, Stark L (1975) The main sequence, a tool for studying human eye movements. Math Biosci 24(3–4):191–204. https://doi.org/10.1016/0025-5564(75)90075-9

    Article  Google Scholar 

  22. Mathôt S (2018) Pupillometry: psychology, physiology, and function. J Cogn 1(1):1–16. https://doi.org/10.5334/joc.18

    Article  Google Scholar 

  23. Goldwater BC (1972) Psychological significance of pupillary movements. Psychol Bull 77(5):340–355. https://doi.org/10.1037/h0032456

    Article  CAS  PubMed  Google Scholar 

  24. Kret ME, Sjak-Shie EE (2018) Preprocessing pupil size data: guidelines and code. Behav Res Methods:1–7. https://doi.org/10.3758/s13428-018-1075-y

    Article  Google Scholar 

  25. Mathôt S et al (2018) Safe and sensible preprocessing and baseline correction of pupil-size data. Behav Res Methods:1–13. https://doi.org/10.3758/s13428-017-1007-2

    Article  Google Scholar 

  26. Hershman R, Henik A, Cohen N (2018) A novel blink detection method based on pupillometry noise. Behav Res Methods 50(1):107–114. https://doi.org/10.3758/s13428-017-1008-1

    Article  PubMed  Google Scholar 

  27. Mathôt S (2013) A simple way to reconstruct pupil size during eye blinks. https://doi.org/10.6084/m9.figshare.688001

  28. Mathôt S, Melmi JB, Castet E (2015) Intrasaccadic perception triggers pupillary constriction. PeerJ 3(e1150):1–16. https://doi.org/10.7717/peerj.1150

    Article  Google Scholar 

  29. Brisson J et al (2013) Pupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackers. Behav Res Methods 45(4):1322–1331. https://doi.org/10.3758/s13428-013-0327-0

    Article  PubMed  Google Scholar 

  30. Gagl B, Hawelka S, Hutzler F (2011) Systematic influence of gaze position on pupil size measurement: analysis and correction. Behav Res Methods 43(4):1171–1181. https://doi.org/10.3758/s13428-011-0109-5

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hayes TR, Petrov AA (2016) Mapping and correcting the influence of gaze position on pupil size measurements. Behav Res Methods 48(2):510–527. https://doi.org/10.3758/s13428-015-0588-x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wierda SM, van Rijn H, Taatgen NA, Martens S (2012) Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution. Proc Natl Acad Sci 109(22):8456–8460. https://doi.org/10.1073/pnas.1201858109

    Article  PubMed  Google Scholar 

  33. Hoeks B, Levelt WJ (1993) Pupillary dilation as a measure of attention: a quantitative system analysis. Behav Res Methods Instrum Comput 25(1):16–26. https://doi.org/10.3758/BF03204445

    Article  Google Scholar 

  34. Joshi S et al (2016) Relationships between pupil diameter and neuronal activity in the locus Coeruleus, Colliculi, and cingulate cortex. Neuron 89(1):221–234. https://doi.org/10.1016/j.neuron.2015.11.028

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hanke, M., Mathôt, S., Ort, E., Peitek, N., Stadler, J., Wagner, A. (2019). A Practical Guide to Functional Magnetic Resonance Imaging with Simultaneous Eye Tracking for Cognitive Neuroimaging Research. In: Pollmann, S. (eds) Spatial Learning and Attention Guidance. Neuromethods, vol 151. Humana, New York, NY. https://doi.org/10.1007/7657_2019_31

Download citation

  • DOI: https://doi.org/10.1007/7657_2019_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9947-7

  • Online ISBN: 978-1-4939-9948-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics