Skip to main content

Combining Transcranial Direct Current Stimulation and Electrophysiology to Understand the Memory Representations that Guide Attention

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 151))

Abstract

How attention is used during visual search is intricately associated with memory. A considerable body of work has demonstrated that representations in both working memory and long-term memory can guide attention in a variety of different circumstances. Neural evidence of such memory-mediated attentional guidance has been elegantly shown using noninvasive electrophysiological measurements of human brain activity. Recently, with the rising popularity of noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), researchers have been able to gain insight into the causal mechanisms of memory-guided attention. Here, we review our current understanding of the role of memory representations in guiding attention and how tDCS can be used to characterize the mechanisms and establish causal relationships. We further discuss the translational implications of using tDCS to alleviate memory-based attentional deficits in psychiatric disorders, such as schizophrenia.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201

    Article  CAS  PubMed  Google Scholar 

  2. Wolfe JM, Cave KR, Franzel SL (1989) Guided search: an alternative to the feature integration model for visual search. J Exp Psychol Hum Percept Perform 15(3):419

    Article  CAS  PubMed  Google Scholar 

  3. Wolfe JM (1994) Guided search 2.0 a revised model of visual search. Psychon Bull Rev 1(2):202–238

    Article  CAS  PubMed  Google Scholar 

  4. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18(1):193–222

    Article  CAS  PubMed  Google Scholar 

  5. Bundesen C (1990) A theory of visual attention. Psychol Rev 97(4):523

    Article  CAS  PubMed  Google Scholar 

  6. Bundesen C, Habekost T, Kyllingsbæk S (2005) A neural theory of visual attention: bridging cognition and neurophysiology. Psychol Rev 112(2):291

    Article  PubMed  Google Scholar 

  7. Duncan J, Humphreys GW (1989) Visual search and stimulus similarity. Psychol Rev 96(3):433

    Article  CAS  PubMed  Google Scholar 

  8. Theeuwes J (1993) Visual selective attention: a theoretical analysis. Acta Psychol (Amst) 83(2):93–154

    Article  CAS  Google Scholar 

  9. Hamker FH (2004) A dynamic model of how feature cues guide spatial attention. Vision Res 44(5):501–521

    Article  PubMed  Google Scholar 

  10. Downing PE (2000) Interactions between visual working memory and selective attention. Psychol Sci 11:467–473

    Article  CAS  PubMed  Google Scholar 

  11. Soto D et al (2005) Early, involuntary top-down guidance of attention from working memory. J Exp Psychol Hum Percept Perform 31(2):248

    Article  PubMed  Google Scholar 

  12. Soto D, Humphreys GW, Rotshtein P (2007) Dissociating the neural mechanisms of memory-based guidance of visual selection. Proc Natl Acad Sci U S A 104(43):17186–17191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soto D et al (2008) Automatic guidance of attention from working memory. Trends Cogn Sci 12(9):342–348

    Article  PubMed  Google Scholar 

  14. Olivers CN (2009) What drives memory-driven attentional capture? The effects of memory type, display type, and search type. J Exp Psychol Hum Percept Perform 35(5):1275

    Article  PubMed  Google Scholar 

  15. Olivers CN, Meijer F, Theeuwes J (2006) Feature-based memory-driven attentional capture: visual working memory content affects visual attention. J Exp Psychol Hum Percept Perform 32(5):1243

    Article  PubMed  Google Scholar 

  16. Carlisle NB, Woodman GF (2011) When memory is not enough: electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention. J Cogn Neurosci 23(10):2650–2664

    Article  PubMed  PubMed Central  Google Scholar 

  17. Carlisle NB, Woodman GF (2011) Automatic and strategic effects in the guidance of attention by working memory representations. Acta Psychol (Amst) 137(2):217–225

    Article  Google Scholar 

  18. Downing P, Dodds C (2004) Competition in visual working memory for control of search. Vis Cogn 11(6):689–703

    Article  Google Scholar 

  19. Woodman GF, Luck SJ (2007) Do the contents of visual working memory automatically influence attentional selection during visual search? J Exp Psychol Hum Percept Perform 33(2):363

    Article  PubMed  PubMed Central  Google Scholar 

  20. Han SW, Kim MS (2009) Do the contents of working memory capture attention? Yes, but cognitive control matters. J Exp Psychol Hum Percept Perform 35(5):1292

    Article  PubMed  Google Scholar 

  21. Kiyonaga A, Egner T, Soto D (2012) Cognitive control over working memory biases of selection. Psychon Bull Rev 19(4):639–646

    Article  PubMed  PubMed Central  Google Scholar 

  22. Houtkamp R, Roelfsema PR (2006) The effect of items in working memory on the deployment of attention and the eyes during visual search. J Exp Psychol Hum Percept Perform 32(2):423

    Article  CAS  PubMed  Google Scholar 

  23. Peters JC, Goebel R, Roelfsema PR (2009) Remembered but unused: the accessory items in working memory that do not guide attention. J Cogn Neurosci 21(6):1081–1091

    Article  PubMed  Google Scholar 

  24. Luria R, Vogel EK (2011) Visual search demands dictate reliance on working memory storage. J Neurosci 31(16):6199–6207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dalvit S, Eimer M (2011) Memory-driven attentional capture is modulated by temporal task demands. Vis Cogn 19(2):145–153

    Article  Google Scholar 

  26. Soto D, Humphreys GW (2008) Stressing the mind: the effect of cognitive load and articulatory suppression on attentional guidance from working memory. Percept Psychophys 70(5):924–934

    Article  PubMed  Google Scholar 

  27. Dombrowe I, Olivers CN, Donk M (2010) The time course of working memory effects on visual attention. Vis Cogn 18(8):1089–1112

    Article  Google Scholar 

  28. Reinhart RM, Woodman GF (2014) High stakes trigger the use of multiple memories to enhance the control of attention. Cereb Cortex 24(8):2022–2035

    Article  PubMed  Google Scholar 

  29. Olivers CN et al (2011) Different states in visual working memory: when it guides attention and when it does not. Trends Cogn Sci 15(7):327–334

    PubMed  Google Scholar 

  30. van Moorselaar D, Theeuwes J, Olivers CN (2016) Learning changes the attentional status of prospective memories. Psychon Bull Rev 23(5):1483–1490

    Article  PubMed  PubMed Central  Google Scholar 

  31. Logan GD, Gordon RD (2001) Executive control of visual attention in dual-task situations. Psychol Rev 108(2):393

    Article  CAS  PubMed  Google Scholar 

  32. Chelazzi L et al (1993) A neural basis for visual search in inferior temporal cortex. Nature 363(6427):345

    Article  CAS  PubMed  Google Scholar 

  33. Chelazzi L et al (1998) Responses of neurons in inferior temporal cortex during memory-guided visual search. J Neurophysiol 80(6):2918–2940

    Article  CAS  PubMed  Google Scholar 

  34. Klaver P et al (1999) An event-related brain potential correlate of visual short-term memory. Neuroreport 10(10):2001–2005

    Article  CAS  PubMed  Google Scholar 

  35. Vogel EK, Machizawa MG (2004) Neural activity predicts individual differences in visual working memory capacity. Nature 428(6984):748

    Article  CAS  PubMed  Google Scholar 

  36. Vogel EK, McCollough AW, Machizawa MG (2005) Neural measures reveal individual differences in controlling access to working memory. Nature 438(7067):500

    Article  CAS  PubMed  Google Scholar 

  37. Ikkai A, McCollough AW, Vogel EK (2010) Contralateral delay activity provides a neural measure of the number of representations in visual working memory. J Neurophysiol 103(4):1963–1968

    Article  PubMed  PubMed Central  Google Scholar 

  38. Machizawa MG, Goh CC, Driver J (2012) Human visual short-term memory precision can be varied at will when the number of retained items is low. Psychol Sci 23(6):554–559

    Article  PubMed  Google Scholar 

  39. Woodman GF, Vogel EK (2008) Selective storage and maintenance of an object’s features in visual working memory. Psychon Bull Rev 15(1):223–229

    Article  PubMed  Google Scholar 

  40. Luria R et al (2010) Visual short-term memory capacity for simple and complex objects. J Cogn Neurosci 22(3):496–512

    Article  PubMed  Google Scholar 

  41. Balaban H, Luria R (in press) Using the contralateral delay activity to study online processing of items still within view. In: Pollmann S (ed) Spatial learning and attention guidance, Neuromethods. Springer Nature, New York

    Google Scholar 

  42. Woodman GF, Arita JT (2011) Direct electrophysiological measurement of attentional templates in visual working memory. Psychol Sci 22(2):212–215

    Article  PubMed  Google Scholar 

  43. Carlisle NB et al (2011) Attentional templates in visual working memory. J Neurosci 31(25):9315–9322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reinhart RM, Carlisle NB, Woodman GF (2014) Visual working memory gives up attentional control early in learning: ruling out interhemispheric cancellation. Psychophysiology 51(8):800–804

    Article  PubMed  PubMed Central  Google Scholar 

  45. Woodman GF, Carlisle NB, Reinhart RM (2013) Where do we store the memory representations that guide attention? J Vis 13(3):1–1

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gunseli E, Meeter M, Olivers CN (2014) Is a search template an ordinary working memory? Comparing electrophysiological markers of working memory maintenance for visual search and recognition. Neuropsychologia 60:29–38

    Article  PubMed  Google Scholar 

  47. Gunseli E, Olivers CN, Meeter M (2014) Effects of search difficulty on the selection, maintenance, and learning of attentional templates. J Cogn Neurosci 26(9):2042–2054

    Article  PubMed  Google Scholar 

  48. Eimer M (1996) The N2pc component as an indicator of attentional selectivity. Electroencephalogr Clin Neurophysiol 99(3):225–234

    Article  CAS  PubMed  Google Scholar 

  49. Kiss M, Van Velzen J, Eimer M (2008) The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology 45(2):240–249

    Article  PubMed  Google Scholar 

  50. Luck SJ, Kappenman ES (2011) The Oxford handbook of event-related potential components. Oxford University Press, Oxford

    Google Scholar 

  51. Luck SJ (2014) An introduction to the event-related potential technique. MIT Press, Cambridge

    Google Scholar 

  52. Reinhart RM, McClenahan LJ, Woodman GF (2016) Attention’s accelerator. Psychol Sci 27(6):790–798

    Article  PubMed  PubMed Central  Google Scholar 

  53. Reinhart RM, Woodman GF (2015) Enhancing long-term memory with stimulation tunes visual attention in one trial. Proc Natl Acad Sci U S A 112(2):625–630

    Article  CAS  PubMed  Google Scholar 

  54. Reinhart RM, Park S, Woodman GF (2018) Localization and elimination of attentional dysfunction in schizophrenia during visual search. Schizophr Bull 45:96–105

    Article  PubMed Central  Google Scholar 

  55. Logan GD (1988) Toward an instance theory of automatization. Psychol Rev 95(4):492

    Article  Google Scholar 

  56. Logan GD (2002) An instance theory of attention and memory. Psychol Rev 109(2):376

    Article  PubMed  Google Scholar 

  57. Anderson JR (1982) Acquisition of cognitive skill. Psychol Rev 89(4):369

    Article  Google Scholar 

  58. Anderson JR (2000) Learning and memory: an integrated approach. Wiley, Hoboken

    Google Scholar 

  59. Rickard TC (1997) Bending the power law: a CMPL theory of strategy shifts and the automatization of cognitive skills. J Exp Psychol Gen 126(3):288

    Article  Google Scholar 

  60. Schneider W, Shiffrin RM (1977) Controlled and automatic human information processing: I. Detection, search, and attention. Psychol Rev 84(1):1

    Article  Google Scholar 

  61. Shiffrin RM, Schneider W (1977) Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychol Rev 84(2):127

    Article  Google Scholar 

  62. Neisser U (1963) Decision-time without reaction-time: experiments in visual scanning. Am J Psychol 76(3):376–385

    Article  Google Scholar 

  63. Nickerson RS (1966) Response times with a memory-dependent decision task. J Exp Psychol 72(5):761

    Article  CAS  PubMed  Google Scholar 

  64. Woodman GF et al (2007) The role of working memory representations in the control of attention. Cereb Cortex 17(suppl_1):i118–i124

    Article  PubMed  Google Scholar 

  65. Wolfe JM (2012) Saved by a log: how do humans perform hybrid visual and memory search? Psychol Sci 23(7):698–703

    Article  PubMed  Google Scholar 

  66. Moores E et al (2003) Associative knowledge controls deployment of visual selective attention. Nat Neurosci 6(2):182

    Article  CAS  PubMed  Google Scholar 

  67. Chun MM (2000) Contextual cueing of visual attention. Trends Cogn Sci 4(5):170–178

    Article  CAS  PubMed  Google Scholar 

  68. Summerfield JJ et al (2006) Orienting attention based on long-term memory experience. Neuron 49(6):905–916

    Article  CAS  PubMed  Google Scholar 

  69. Stokes MG et al (2012) Long-term memory prepares neural activity for perception. Proc Natl Acad Sci U S A 109(6):E360–E367

    Article  CAS  PubMed  Google Scholar 

  70. Hutchinson JB, Turk-Browne NB (2012) Memory-guided attention: control from multiple memory systems. Trends Cogn Sci 16(12):576–579

    Article  PubMed  PubMed Central  Google Scholar 

  71. Võ MLH, Wolfe JM (2012) When does repeated search in scenes involve memory? Looking at versus looking for objects in scenes. J Exp Psychol Hum Percept Perform 38(1):23

    Article  PubMed  Google Scholar 

  72. Rosen ML et al (2017) Cortical and subcortical contributions to long-term memory-guided visuospatial attention. Cereb Cortex 28(8):2935–2947

    Article  PubMed Central  Google Scholar 

  73. Rosen ML et al (2015) Influences of long-term memory-guided attention and stimulus-guided attention on visuospatial representations within human intraparietal sulcus. J Neurosci 35(32):11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rosen ML, Stern CE, Somers DC (2014) Long-term memory guidance of visuospatial attention in a change-detection paradigm. Front Psychol 5:266

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brady TF et al (2008) Visual long-term memory has a massive storage capacity for object details. Proc Natl Acad Sci U S A 105(38):14325–14329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Standing L (1973) Learning 10000 pictures. Q J Exp Psychol 25(2):207–222

    Article  CAS  PubMed  Google Scholar 

  77. Danker JF et al (2008) Characterizing the ERP old–new effect in a short-term memory task. Psychophysiology 45(5):784–793

    Article  PubMed  PubMed Central  Google Scholar 

  78. Paller KA, Lucas HD, Voss JL (2012) Assuming too much from ‘familiar’ brain potentials. Trends Cogn Sci 16(6):313–315

    Article  PubMed  Google Scholar 

  79. Voss JL, Schendan HE, Paller KA (2010) Finding meaning in novel geometric shapes influences electrophysiological correlates of repetition and dissociates perceptual and conceptual priming. Neuroimage 49(3):2879–2889

    Article  PubMed  Google Scholar 

  80. Tsivilis D, Otten LJ, Rugg MD (2001) Context effects on the neural correlates of recognition memory: an electrophysiological study. Neuron 31(3):497–505

    Article  CAS  PubMed  Google Scholar 

  81. Duarte A et al (2004) Dissociable neural correlates for familiarity and recollection during the encoding and retrieval of pictures. Brain Res Cogn Brain Res 18(3):255–272

    Article  PubMed  Google Scholar 

  82. Friedman D (2007) ERP studies of recognition memory: differential effects of familiarity, recollection, and episodic priming. New Res Cogn Sci:188

    Google Scholar 

  83. Reinhart RM et al (2017) Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Atten Percept Psychophys 79(1):3–23

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bikson M et al (2016) Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul 9(5):641–661

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bindman LJ, Lippold OCJ, Redfearn JWT (1962) Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature 196(4854):584

    Article  CAS  PubMed  Google Scholar 

  86. Creutzfeldt OD, Fromm GH, Kapp H (1962) Influence of transcortical dc currents on cortical neuronal activity. Exp Neurol 5(6):436–452

    Article  CAS  PubMed  Google Scholar 

  87. Gartside IB (1968) Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: role of protein synthesis. Nature 220(5165):383

    Article  CAS  PubMed  Google Scholar 

  88. Purpura DP, McMurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28(1):166–185

    Article  CAS  PubMed  Google Scholar 

  89. Terzuolo CA, Bullock TH (1956) Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proc Natl Acad Sci U S A 42(9):687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Radman T et al (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2(4):215–228

    Article  PubMed  PubMed Central  Google Scholar 

  91. Reato D et al (2010) Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci 30(45):15067–15079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reinhart RM, Woodman GF (2014) Causal control of medial–frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning. J Neurosci 34(12):4214–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bikson M, Rahman A, Datta A (2012) Computational models of transcranial direct current stimulation. Clin EEG Neurosci 43(3):176–183

    Article  PubMed  Google Scholar 

  94. Kuo HI et al (2013) Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimul 6(4):644–648

    Article  PubMed  Google Scholar 

  95. Monai H et al (2016) Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun 7:11100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ruohonen J, Karhu J (2012) tDCS possibly stimulates glial cells. Clin Neurophysiol 123(10):2006–2009

    Article  PubMed  Google Scholar 

  97. Gellner AK, Reis J, Fritsch B (2016) Glia: a neglected player in non-invasive direct current brain stimulation. Front Cell Neurosci 10:188

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vöröslakos M et al (2018) Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun 9(1):483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Datta A et al (2009) Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul 2(4):201–207

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ruffini G et al (2013) Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng 21(3):333–345

    Article  PubMed  Google Scholar 

  101. Reinhart RM, Woodman GF (2015) The surprising temporal specificity of direct-current stimulation. Trends Neurosci 38(8):459–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Poreisz C et al (2007) Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull 72(4–6):208–214

    Article  PubMed  Google Scholar 

  103. Fonteneau C et al (2019) Sham tDCS: a hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimul. https://doi.org/10.1016/j.brs.2018.12.977

    Article  PubMed  Google Scholar 

  104. Boggio PS et al (2008) Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend 92(1–3):55–60

    Article  PubMed  Google Scholar 

  105. Coffman BA, Trumbo MC, Clark VP (2012) Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neurosci 13(1):108

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bikson M et al (2018) Rigor and reproducibility in research with transcranial electrical stimulation: an NIMH-sponsored workshop. Brain Stimul 11(3):465–480

    Article  PubMed  Google Scholar 

  107. Reinhart RMG, Nguyen JA (2019) Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci. https://doi.org/10.1038/s41593-019-0371-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Richardson JD et al (2014) Toward development of sham protocols for high-definition transcranial direct current stimulation (HD-tDCS). NeuroRegulation 1(1):62–72

    Article  Google Scholar 

  109. Liebetanz D et al (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125(10):2238–2247

    Article  PubMed  Google Scholar 

  110. Nitsche MA et al (2002) Modulation of cortical excitability by transcranial direct current stimulation. Nervenarzt 73(4):332–335

    Article  CAS  PubMed  Google Scholar 

  111. Nitsche MA et al (2003) Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 553(1):293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stagg CJ et al (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci 29(16):5202–5206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Clark VP et al (2011) Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study. Neurosci Lett 500(1):67–71

    Article  CAS  PubMed  Google Scholar 

  114. Medeiros LF et al (2012) Neurobiological effects of transcranial direct current stimulation: a review. Front Psych 3:110

    Google Scholar 

  115. Pelletier SJ, Cicchetti F (2015) Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int J Neuropsychopharmacol 18(2):pyu047

    Article  PubMed Central  Google Scholar 

  116. Callan DE et al (2016) Simultaneous tDCS-fMRI identifies resting state networks correlated with visual search enhancement. Front Hum Neurosci 10:72

    PubMed  PubMed Central  Google Scholar 

  117. Schestatsky P, Morales-Quezada L, Fregni F (2013) Simultaneous EEG monitoring during transcranial direct current stimulation. J Vis Exp 76:50426

    Google Scholar 

  118. Lauro LJR et al (2014) TDCS increases cortical excitability: direct evidence from TMS–EEG. Cortex 58:99–111

    Article  Google Scholar 

  119. Roy A, Baxter B, He B (2014) High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: a simultaneous tDCS–EEG study. IEEE Trans Biomed Eng 61(7):1967–1978

    Article  PubMed  PubMed Central  Google Scholar 

  120. Santarnecchi E et al (2015) Enhancing cognition using transcranial electrical stimulation. Curr Opin Behav Sci 4:171–178

    Article  Google Scholar 

  121. Krause MR et al (2017) Transcranial direct current stimulation facilitates associative learning and alters functional connectivity in the primate brain. Curr Biol 27(20):3086–3096

    Article  CAS  PubMed  Google Scholar 

  122. Filmer HL et al (2014) Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci 37(12):742–753

    Article  CAS  PubMed  Google Scholar 

  123. Kuo MF, Paulus W, Nitsche MA (2014) Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage 85:948–960

    Article  PubMed  Google Scholar 

  124. Coffman BA, Clark VP, Parasuraman R (2014) Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage 85:895–908

    Article  PubMed  Google Scholar 

  125. Reteig LC et al (2017) Transcranial electrical stimulation as a tool to enhance attention. J Cogn Enhanc 1(1):10–25

    Article  Google Scholar 

  126. Moore T, Zirnsak M (2017) Neural mechanisms of selective visual attention. Annu Rev Psychol 68:47–72

    Article  CAS  PubMed  Google Scholar 

  127. Nelson JT et al (2014) Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage 85:909–917

    Article  PubMed  Google Scholar 

  128. Clarke PJ et al (2014) The causal role of the dorsolateral prefrontal cortex in the modification of attentional bias: evidence from transcranial direct current stimulation. Biol Psychiatry 76(12):946–952

    Article  PubMed  Google Scholar 

  129. Sparing R et al (2009) Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain 132(11):3011–3020

    Article  CAS  PubMed  Google Scholar 

  130. Moos K et al (2012) Modulation of top-down control of visual attention by cathodal tDCS over right IPS. J Neurosci 32(46):16360–16368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Soto D, Llewelyn D, Silvanto J (2012) Distinct causal mechanisms of attentional guidance by working memory and repetition priming in early visual cortex. J Neurosci 32(10):3447–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang M et al (2018) Evaluating the role of the dorsolateral prefrontal cortex and posterior parietal cortex in memory-guided attention with repetitive transcranial magnetic stimulation. Front Hum Neurosci 12:236

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sestieri C et al (2014) Domain-general signals in the cingulo-opercular network for visuospatial attention and episodic memory. J Cogn Neurosci 26(3):551–568

    Article  PubMed  Google Scholar 

  134. Pardo JV et al (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci U S A 87(1):256–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dosenbach NU et al (2006) A core system for the implementation of task sets. Neuron 50(5):799–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Peterson BS et al (1999) An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biol Psychiatry 45(10):1237–1258

    Article  CAS  PubMed  Google Scholar 

  137. Benedict RH et al (2002) Covert auditory attention generates activation in the rostral/dorsal anterior cingulate cortex. J Cogn Neurosci 14(4):637–645

    Article  PubMed  Google Scholar 

  138. Margulies DS et al (2007) Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37(2):579–588

    Article  PubMed  Google Scholar 

  139. Johnston K et al (2007) Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching. Neuron 53(3):453–462

    Article  CAS  PubMed  Google Scholar 

  140. Rushworth MF et al (2007) Functional organization of the medial frontal cortex. Curr Opin Neurobiol 17(2):220–227

    Article  CAS  PubMed  Google Scholar 

  141. Posner MI, Dehaene S (1994) Attentional networks. Trends Neurosci 17(2):75–79

    Article  CAS  PubMed  Google Scholar 

  142. Bonini F et al (2014) Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science 343(6173):888–891

    Article  CAS  PubMed  Google Scholar 

  143. Scangos KW et al (2013) Performance monitoring by pre-supplementary and supplementary motor area during an arm movement countermanding task. J Neurophysiol 109:1928

    Article  PubMed  PubMed Central  Google Scholar 

  144. Millan MJ et al (2012) Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 11(2):141

    Article  CAS  PubMed  Google Scholar 

  145. Trivedi JK (2006) Cognitive deficits in psychiatric disorders: current status. Indian J Psychiatry 48(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bozoki A et al (2001) Mild cognitive impairments predict dementia in nondemented elderly patients with memory loss. Arch Neurol 58(3):411–416

    Article  CAS  PubMed  Google Scholar 

  147. Bowie CR, Harvey PD (2006) Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr Dis Treat 2(4):531

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hemsley DR (2005) The development of a cognitive model of schizophrenia: placing it in context. Neurosci Biobehav Rev 29(6):977–988

    Article  PubMed  Google Scholar 

  149. Barnett W, Mundt C (1992) Are latent thought disorders the core of negative schizophrenia? In: Phenomenology, language & schizophrenia. Springer, New York, pp 240–257

    Chapter  Google Scholar 

  150. Huber G (1986) Psychiatrische Aspekte des Basisstörungskonzeptes. In: Schizophrene Basisstörungen. Springer, Berlin, pp 39–143

    Chapter  Google Scholar 

  151. Gold JM et al (2007) Impaired top–down control of visual search in schizophrenia. Schizophr Res 94(1–3):148–155

    Article  PubMed  PubMed Central  Google Scholar 

  152. Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl) 169(3–4):257–297

    Article  CAS  Google Scholar 

  153. Gray JA et al (1991) The neuropsychology of schizophrenia. Behav Brain Sci 14(1):1–20

    Article  Google Scholar 

  154. Heckers S et al (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1(4):318

    Article  CAS  PubMed  Google Scholar 

  155. Sigurdsson T et al (2010) Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464(7289):763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Orlov ND et al (2017) Stimulating cognition in schizophrenia: a controlled pilot study of the effects of prefrontal transcranial direct current stimulation upon memory and learning. Brain Stimul 10(3):560–566

    Article  PubMed  Google Scholar 

  157. Papazova I et al (2018) Improving working memory in schizophrenia: effects of 1 mA and 2 mA transcranial direct current stimulation to the left DLPFC. Schizophr Res 202:203–209

    Article  PubMed  Google Scholar 

  158. Gomes JS et al (2018) Effects of transcranial direct current stimulation on working memory and negative symptoms in schizophrenia: a phase II randomized sham-controlled trial. Schizophr Res Cogn 12:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Brunoni AR et al (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 5(3):175–195

    Article  PubMed  Google Scholar 

  160. Kekic M et al (2016) A systematic review of the clinical efficacy of transcranial direct current stimulation (tDCS) in psychiatric disorders. J Psychiatr Res 74:70–86

    Article  PubMed  Google Scholar 

  161. James W (1890) The principles of psychology. Holt, New York

    Google Scholar 

  162. Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. Neuroscientist 17(1):37–53

    Article  PubMed  Google Scholar 

  163. Horvath JC, Forte JD, Carter O (2015) Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul 8(3):535–550

    Article  PubMed  Google Scholar 

  164. Bestmann S, de Berker AO, Bonaiuto J (2015) Understanding the behavioural consequences of noninvasive brain stimulation. Trends Cogn Sci 19(1):13–20

    Article  PubMed  Google Scholar 

  165. Romei V, Thut G, Silvanto J (2016) Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci 39(11):782–795

    Article  CAS  PubMed  Google Scholar 

  166. Widge AS (2018) Cross-species neuromodulation from high-intensity transcranial electrical stimulation. Trends Cogn Sci 22(5):372–374

    Article  PubMed  Google Scholar 

  167. Grossman N et al (2017) Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169(6):1029–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13(2):121

    Article  CAS  PubMed  Google Scholar 

  169. Jensen O et al (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12(8):877–882

    Article  PubMed  Google Scholar 

  170. Foster JJ et al (2015) The topography of alpha-band activity tracks the content of spatial working memory. J Neurophysiol 115(1):168–177

    Article  PubMed  PubMed Central  Google Scholar 

  171. Reinhart RM, Woodman GF (2014) Oscillatory coupling reveals the dynamic reorganization of large-scale neural networks as cognitive demands change. J Cogn Neurosci 26(1):175–188

    Article  PubMed  Google Scholar 

  172. Daume J et al (2017) Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. J Neurosci 37(2):313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12(2):105

    Article  CAS  PubMed  Google Scholar 

  174. Sarnthein J et al (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci U S A 95(12):7092–7096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Backus AR et al (2016) Hippocampal-prefrontal theta oscillations support memory integration. Curr Biol 26(4):450–457

    Article  CAS  PubMed  Google Scholar 

  176. Ketz NA, Jensen O, O’Reilly RC (2015) Thalamic pathways underlying prefrontal cortex–medial temporal lobe oscillatory interactions. Trends Neurosci 38(1):3–12

    Article  CAS  PubMed  Google Scholar 

  177. Griffiths B et al (2016) Brain oscillations track the formation of episodic memories in the real world. Neuroimage 143:256–266

    Article  PubMed  Google Scholar 

  178. Reinhart RM et al (2012) Homologous mechanisms of visuospatial working memory maintenance in macaque and human: properties and sources. J Neurosci 32(22):7711–7722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Polanía R, Nitsche MA, Paulus W (2011) Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 32(8):1236–1249

    Article  PubMed  Google Scholar 

  180. Soekadar SR et al (2013) In vivo assessment of human brain oscillations during application of transcranial electric currents. Nat Commun 4:2032

    Article  PubMed  CAS  Google Scholar 

  181. Herrmann CS et al (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci 7:279

    Article  PubMed  PubMed Central  Google Scholar 

  182. Antal A, Herrmann CS (2016) Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast 2016:1

    Article  CAS  Google Scholar 

  183. Reato D et al (2013) Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies. Front Hum Neurosci 7:687

    Article  PubMed  PubMed Central  Google Scholar 

  184. Reinhart RM (2017) Disruption and rescue of interareal theta phase coupling and adaptive behavior. Proc Natl Acad Sci U S A 114(43):11542–11547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Helfrich RF et al (2014) Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol 12(12):e1002031

    Article  PubMed  PubMed Central  Google Scholar 

  186. Polanía R et al (2012) The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol 22(14):1314–1318

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. G. Reinhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grover, S., Reinhart, R.M.G. (2019). Combining Transcranial Direct Current Stimulation and Electrophysiology to Understand the Memory Representations that Guide Attention. In: Pollmann, S. (eds) Spatial Learning and Attention Guidance. Neuromethods, vol 151. Humana, New York, NY. https://doi.org/10.1007/7657_2019_24

Download citation

  • DOI: https://doi.org/10.1007/7657_2019_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9947-7

  • Online ISBN: 978-1-4939-9948-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics