Skip to main content

Visual Foraging Tasks Provide New Insights into the Orienting of Visual Attention: Methodological Considerations

  • Protocol
  • First Online:
Spatial Learning and Attention Guidance

Part of the book series: Neuromethods ((NM,volume 151))

Abstract

The topic of visual attention has played an increasingly large role in visual perception research in the past half-century or so. This highlights the need for paradigms that allow a thorough understanding of the function of visual attention and that the experimental tasks that are used are varied and dynamic enough to sample the operational characteristics of visual attention. We discuss newly developed foraging tasks that are more dynamic than many tasks used in the literature, such as the visual search task. Our orienting in the visual environment may not be particularly well encapsulated by the analogy of search for a single item, a search that then ends once the single target is found. Multitarget foraging tasks might cast further light upon the orienting of visual attention, especially in dynamic, multitarget environments. During foraging, observers are asked to select a certain number of target types among distractor items. Here we discuss such foraging tasks, the main considerations for efficient design and effective data analysis. We propose that these tasks will be a highly valuable addition to the toolbox of scientists who investigate the operation of visual attention and visual cognition more generally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215

    Article  CAS  PubMed  Google Scholar 

  2. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18(1):193–222

    Article  CAS  PubMed  Google Scholar 

  3. Driver J (2001) A selective review of selective attention research from the past century. Br J Psychol 92(1):53–78

    Article  CAS  PubMed  Google Scholar 

  4. Kristjánsson Á (2006) Rapid learning in attention shifts—a review. Vis Cognit 13:324–362

    Article  Google Scholar 

  5. O’Connor DH, Fukui MM, Pinsk MA, Kastner S (2002) Attention modulates responses in the human lateral geniculate nucleus. Nat Neurosci 5(11):1203–1209

    Article  PubMed  CAS  Google Scholar 

  6. Wojciulik E, Kanwisher N, Driver J (1998) Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. J Neurophysiol 79(3):1574–1578

    Article  CAS  PubMed  Google Scholar 

  7. Egeth HE (1966) Parallel versus serial processes in multidimensional stimulus discrimination. Percept Psychophys 1(4):245–252

    Article  Google Scholar 

  8. Sternberg S (1967) Two operations in character recognition: some evidence from reaction time measurements. Percept Psychophys 2:45–53

    Article  Google Scholar 

  9. Treisman A (1986) Features and objects in visual processing. Sci Am 255(5):114–125

    Article  Google Scholar 

  10. Wolfe JM (1998) Visual search. In: Pashler H (ed) Attention. University College London Press, London, pp 13–73

    Google Scholar 

  11. Kaplan IT, Carvellas T (1965) Scanning for multiple targets. Percept Mot Skills 21:239–243

    Article  CAS  PubMed  Google Scholar 

  12. Metlay W, Sokoloff M, Kaplan IT (1970) Visual search for multiple targets. J Exp Psychol 85(1):148

    Article  CAS  PubMed  Google Scholar 

  13. Neisser U, Novick R, Lazar R (1963) Searching for ten targets simultaneously. Percept Mot Skills 17(3):955–961

    Article  CAS  PubMed  Google Scholar 

  14. Eriksen CW, Schultz DW (1979) Information processing in visual search: a continuous flow conception and experimental results. Percept Psychophys 25(4):249–263

    Article  CAS  PubMed  Google Scholar 

  15. Treisman A, Sykes M, Gelade G (1977) Selective attention and stimulus integration. In: Dornic S (ed) Attention and performance VI. Lawrence Erlbaum, Hillsdale, pp 333–361

    Google Scholar 

  16. Neisser U (1963) Decision-time without reaction-time: experiments in visual scanning. Am J Psychol 76(3):376–385

    Article  Google Scholar 

  17. Sternberg S (1969) The discovery of processing stages: extensions of Donders’ method. Acta Psychol (Amst) 30:276–315

    Article  Google Scholar 

  18. Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136

    Article  CAS  PubMed  Google Scholar 

  19. Neisser U (1964) Visual search. Sci Am 210(6):94–103

    Article  CAS  PubMed  Google Scholar 

  20. Yantis S, Jonides J (1984) Abrupt visual onsets and selective attention: evidence from visual search. J Exp Psychol Hum Percept Perform 10(5):601

    Article  CAS  PubMed  Google Scholar 

  21. Wolfe JM, Cave KR, Franzel SL (1989) Guided search: an alternative to the feature integration model for visual search. J Exp Psychol Hum Percept Perform 15(3):419–433

    Article  CAS  PubMed  Google Scholar 

  22. Cavanagh JP, Chase WG (1971) The equivalence of target and nontarget processing in visual search. Percept Psychophys 9(6):493–495

    Article  Google Scholar 

  23. Wang D, Kristjánsson Á, Nakayama K (2005) Efficient visual search without top-down or bottom-up guidance. Percept Psychophys 67:239–253

    Article  PubMed  Google Scholar 

  24. Kristjánsson Á (2015) Reconsidering visual search. i-Perception 6(6):2041669515614670

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bravo MJ, Nakayama K (1992) The role of attention in different visual-search tasks. Percept Psychophys 51(5):465–472

    Article  CAS  PubMed  Google Scholar 

  26. Enns JT, Rensink RA (1990) Sensitivity to three-dimensional orientation in visual search. Psychol Sci 1(5):323–326

    Article  Google Scholar 

  27. Joseph JS, Chun MM, Nakayama K (1997) Attentional requirements in a ‘preattentive’ feature search task. Nature 387(6635):805–807

    Article  CAS  PubMed  Google Scholar 

  28. Brady TF, Konkle T, Alvarez GA, Oliva A (2008) Visual long-term memory has a massive storage capacity for object details. Proc Natl Acad Sci 105(38):14325–14329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bukovinszky T, Rikken I, Evers S (2017) Effects of pollen species composition on the foraging behaviour and offspring performance of the mason bee Osmia bicornis (L.). Basic Appl Ecol 18:21–30

    Article  Google Scholar 

  30. Dawkins M (1971) Perceptual changes in chicks: another look at the ‘search image’ concept. Anim Behav 19(3):566–574

    Article  Google Scholar 

  31. Mallott EK, Garber PA, Malhi RS (2017) Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus). Am J Phys Anthropol 162(2):241–254

    Article  PubMed  Google Scholar 

  32. Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52(2):137–154

    Article  Google Scholar 

  33. Schuppli C, Forss SIF, Meulman EJM (2016) Development of foraging skills in two orangutan populations: needing to learn or needing to grow? Front Zool 13(43). https://doi.org/10.1186/s12983-016-0178-5

  34. Tinbergen L (1960) The natural control of insects in pinewoods I. Factors influencing the intensity of predation by songbirds. Archives Néerlandaises de Zoologie 13:265–336

    Article  Google Scholar 

  35. Dukas R (2002) Behavioural and ecological consequences of limited attention. Philos Trans R Soc Lond B Biol Sci 357(1427):1539–1547

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bond AB, Kamil AC (1999) Searching image in blue jays: facilitation and interference in sequential priming. Anim Learn Behav 27(4):461–471

    Article  Google Scholar 

  37. Dukas R, Kamil AC (2001) Limited attention: the constraint underlying search image. Behav Ecol 12(2):192–199

    Article  Google Scholar 

  38. Nakayama K, Maljkovic V, Kristjánsson Á (2004) Short term memory for the rapid deployment of visual attention. In: Gazzaniga MS (ritstj.) The cognitive neurosciences, 3rd edn. MIT Press, Cambridge

    Google Scholar 

  39. Awh E, Jonides J (2001) Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci 5(3):119–126

    Article  CAS  PubMed  Google Scholar 

  40. Bundesen C (1990) A theory of visual attention. Psychol Rev 97(4):523–547

    Article  CAS  PubMed  Google Scholar 

  41. Carlisle NB, Kristjánsson Á (2018) How visual working memory contents influence priming of visual attention. Psychol Res 82(5):833–839

    Article  PubMed  Google Scholar 

  42. Vickery TJ, King LW, Jiang Y (2005) Setting up the target template in visual search. J Vis 5(1):81–92

    Article  PubMed  Google Scholar 

  43. Woodman GF, Carlisle NB, Reinhart RM (2013) Where do we store the memory representations that guide attention? J Vis 13(3):1–17

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bond AB (1983) Visual search and selection of natural stimuli in the pigeon: the attention threshold hypothesis. J Exp Psychol Anim Behav Process 9(3):292–306

    Article  CAS  PubMed  Google Scholar 

  45. Reid PJ, Shettleworth SJ (1992) Detection of cryptic prey: search image or search rate? J Exp Psychol Anim Behav Process 18(3):273–286

    Article  CAS  PubMed  Google Scholar 

  46. Pietrewicz AT, Kamil AC (1979) Search image formation in the blue jay (Cyanocitta cristata). Science 204(4399):1332–1333

    Article  CAS  PubMed  Google Scholar 

  47. Punzalan D, Rodd FH, Hughes KA (2005) Perceptual processes and the maintenance of polymorphism through frequency-dependent predation. Evol Ecol 19(3):303–320

    Article  Google Scholar 

  48. Ballard DH, Hayhoe MM, Li F, Whitehead SD (1992) Hand-eye coordination during sequential tasks. Philos Trans R Soc Lond B Biol Sci 337(1281):331–339

    Article  CAS  PubMed  Google Scholar 

  49. Bond AB (1982) The bead game: response strategies in free assortment. Hum Factors 24(1):101–110

    Article  Google Scholar 

  50. Gilchrist ID, North A, Hood B (2001) Is visual search really like foraging? Perception 30(12):1459–1464

    Article  CAS  PubMed  Google Scholar 

  51. Wolfe JM (2013) When is it time to move to the next raspberry bush? Foraging rules in human visual search. J Vis 13(3):1–17

    Article  Google Scholar 

  52. Draschkow D, Kristjánsson (in preparation) Foraging experiments in virtual reality environments. Manuscript in preparation

    Google Scholar 

  53. Kristjánsson Á, Jóhannesson ÓI, Thornton IM (2014) Common attentional constraints in visual foraging. PLoS One 9(6):e100752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kristjánsson T, Kristjánsson Á (2018) Foraging through multiple target categories reveals the flexibility of visual working memory. Acta Psychol (Amst) 183:108–115

    Article  Google Scholar 

  55. Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390(6657):279–281

    Article  CAS  PubMed  Google Scholar 

  56. Olivers CN, Peters J, Houtkamp R, Roelfsema PR (2011) Different states in visual working memory: when it guides attention and when it does not. Trends Cogn Sci 15(7):327–334

    PubMed  Google Scholar 

  57. Cain MS, Vul E, Clark K, Mitroff SR (2012) A Bayesian optimal foraging model of human visual search. Psychol Sci 23(9):1047–1054

    Article  PubMed  Google Scholar 

  58. Ehinger KA, Wolfe JM (2016) When is it time to move to the next map? Optimal foraging in guided visual search. Atten Percept Psychophys 78(7):2135–2151

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wolfe JM, Cain MS, Alaoui-Soce A (2018) Hybrid value foraging: How the value of targets shapes human foraging behavior. Atten Percept Psychophys 80:609–621

    Article  PubMed  Google Scholar 

  60. Zhang J, Gong X, Fougnie D, Wolfe JM (2017) How humans react to changing rewards during visual foraging. Atten Percept Psychophys 79(8):2299–2309

    Article  PubMed  Google Scholar 

  61. Charnov EL (1976) Optimal foraging: the marginal value theorem. Theor Popul Biol 9(2):129–135, 110(971), 141–151

    Article  CAS  PubMed  Google Scholar 

  62. Mannan SK, Mort DJ, Hodgson TL, Driver J, Kennard C, Husain M (2005) Revisiting previously searched locations in visual neglect: role of right parietal and frontal lesions in misjudging old locations as new. J Cogn Neurosci 17(2):340–354

    Article  PubMed  Google Scholar 

  63. Parton A, Malhotra P, Husain M (2004) Hemispatial neglect. J Neurol Neurosurg Psychiatry 75(1):13–21

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dehaene S, Cohen L (1994) Dissociable mechanisms of subitizing and counting: neuropsychological evidence from simultanagnosic patients. J Exp Psychol Hum Percept Perform 20:958–975

    Article  CAS  PubMed  Google Scholar 

  65. Malhotra P, Mannan S, Driver J, Husain M (2004) Impaired spatial working memory: one component of the visual neglect syndrome? Cortex 40(4-5):667–676

    Article  PubMed  Google Scholar 

  66. Cain MS, Adamo SH, Mitroff SR (2013) A taxonomy of errors in multiple-target visual search. Visual Cognition 21(7):899–921

    Article  Google Scholar 

  67. Peterson MS, Kramer AF, Wang RF, Irwin DE, McCarley JS (2001) Visual search has memory. Psychol Sci 12(4):287–292

    Article  CAS  PubMed  Google Scholar 

  68. Cain MS, Mitroff SR (2012) Memory for found targets interferes with subsequent performance in multiple-target visual search. J Exp Psychol Hum Percept Perform 39(5):1398–1406

    Article  PubMed  Google Scholar 

  69. Thornton IM, Horowitz TS (2004) The multi-item localization (MILO) task: measuring the spatiotemporal context of vision for action. Percept Psychophys 66(1):38–50

    Article  PubMed  Google Scholar 

  70. Horowitz TS, Thornton IM (2008) Objects or locations in vision for action? Evidence from the MILO task. Vis Cognit 16(4):486–513

    Article  Google Scholar 

  71. Buxbaum LJ, Ferraro MK, Veramonti T, Farne A, Whyte J, Ladavas E, Frassinetti F, Coslett HB (2004) Hemispatial neglect: subtypes, neuroanatomy, and disability. Neurology 62(5):749–756

    Article  CAS  PubMed  Google Scholar 

  72. Heilman KM, Valenstein E (1979) Mechanisms underlying hemispatial neglect. Ann Neurol 5(2):166–170

    Article  CAS  PubMed  Google Scholar 

  73. Saevarsson S, Halsband U, Kristjánsson Á (2011) Designing rehabilitation programs for neglect: could 2 be more than 1+ 1? Appl Neuropsychol 18(2):95–106

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kristjánsson Á, Vuilleumier P (2010) Disruption of spatial memory in visual search in the left visual field in patients with hemispatial neglect. Vision Res 50:1426–1435

    Article  PubMed  Google Scholar 

  75. Husain M, Mannan S, Hodgson T, Wojciulik E, Driver J, Kennard C (2001) Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. Brain 124(5):941–952

    Article  CAS  PubMed  Google Scholar 

  76. Dukas R, Ellner S (1993) Information processing and prey detection. Ecology 74:1337–1346

    Article  Google Scholar 

  77. Jóhannesson ÓI, Kristjánsson Á, Thornton IM (2017) Are foraging patterns in humans related to working memory and inhibitory control? Jpn Psychol Res 59:152–166

    Article  Google Scholar 

  78. Kristjánsson T, Thornton IM, Chetverikov A, Kristjánsson Á (Under review) Dynamics of visual attention revealed in foraging tasks. Manuscript under review

    Google Scholar 

  79. Ólafsdóttir IM, Kristjánsson T, Gestsdóttir S, Jóhannesson ÓI, Kristjánsson Á (2016) Understanding visual attention in childhood: insights from a new visual foraging task. Cogn Res Princ Implic 1(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ólafsdóttir IM, Gestsdóttir S, Kristjánsson Á (2019) Visual foraging and executive functions: a developmental perspective. Acta Psychol (Amst) 193:203–213

    Article  Google Scholar 

  81. Kristjánsson T, Thornton IM, Kristjánsson Á (2018) Time limits during visual foraging reveal flexible working memory templates. J Exp Psychol Hum Percept Perform 44(6):827–835

    Article  PubMed  Google Scholar 

  82. Jóhannesson ÓI, Thornton IM, Smith IJ, Chetverikov A, Kristjánsson Á (2016) Visual foraging with fingers and eye gaze. i-Perception 7(2):2041669516637279

    Article  PubMed  PubMed Central  Google Scholar 

  83. Socé AA, Cain M, Wolfe J (2016) Fitting two target templates into the focus of attention in a hybrid foraging task. J Vis 16(12):1288

    Article  Google Scholar 

  84. Wolfe JM, Aizenman AM, Boettcher SEP, Cain MS (2016) Hybrid foraging search: searching for multiple instances of multiple types of target. Vision Res 119:50–59

    Article  PubMed  PubMed Central  Google Scholar 

  85. Clarke ADF, Irons J, James W, Leber AB, Hunt AR (2018) Stable individual differences in strategies within, but not between, visual search tasks. https://doi.org/10.31234/osf.io/bqa5v

  86. Woods AJ, Göksun T, Chatterjee A, Zelonis S, Mehta A, Smith SE (2013) The development of organized visual search. Acta Psychol (Amst) 143:191–199

    Article  Google Scholar 

  87. Gauthier L, Dehaut F, Joanette Y (1989) The bells test: a quantitative and qualitative test for visual neglect. Int J Clin Neuropsychol

    Google Scholar 

  88. Mark VW, Kooistra CA, Heilman KM (1988) Hemispatial neglect affected by non-neglected stimuli. Neurology 38(8):1207–1211

    Article  CAS  PubMed  Google Scholar 

  89. Weintraub S, Mesulam MM (1988) Visual hemispatial inattention: stimulus parameters and exploratory strategies. J Neurol Neurosurg Psychiatry 51(12):1481–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kristjánsson Á, Björnsson AS, Kristjánsson T (Submitted) Foraging with Anne Treisman: patch leaving, features versus conjunctions and memory for foraged location. Manuscript submitted for publication

    Google Scholar 

  91. Sokal RR, Rolff FG (1981) Biometry. W.H. Freeman and Co, New York

    Google Scholar 

  92. Zar JH (1974) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  93. Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100(2):403–405

    Article  Google Scholar 

  94. Hosoi E, Rittenhouse LR, Swift DM, Richards RW (1995) Foraging strategies of cattle in a Y-maze: influence of food availability. Appl Anim Behav Sci 43(3):189–196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Árni Kristjánsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kristjánsson, Á., Ólafsdóttir, I.M., Kristjánsson, T. (2019). Visual Foraging Tasks Provide New Insights into the Orienting of Visual Attention: Methodological Considerations. In: Pollmann, S. (eds) Spatial Learning and Attention Guidance. Neuromethods, vol 151. Humana, New York, NY. https://doi.org/10.1007/7657_2019_21

Download citation

  • DOI: https://doi.org/10.1007/7657_2019_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9947-7

  • Online ISBN: 978-1-4939-9948-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics