Skip to main content

Methodology for Detecting and Tracking Brain-Derived Neurotrophic Factor Complexes in Neurons Using Single Quantum Dots

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 143))

Abstract

We describe a methodological workflow for detecting and tracking single brain-derived neurotrophic factor (BDNF) receptor complexes in primary cultures of neurons. This methodology includes the preparation of BDNF-conjugated quantum dot fluorescent probes for sensitive detection of single BDNF complexes in fixed neurons as well as single-particle tracking (SPT) in live neurons. These methods are valuable for high-resolution localization and quantitation of low-abundance proteins in single neurons and for obtaining nanoscale-resolution, dynamic information of BDNF trafficking for long time durations (min) in live neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bibel M, Barde Y (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14:2919–2937

    Article  CAS  Google Scholar 

  2. Huang E, Reichardt L (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  Google Scholar 

  3. Binder D, Scharfman H (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–131

    Article  CAS  Google Scholar 

  4. Mannion R, Costigan M, Decosterd I, Amaya F, Ma Q, Holstege J, Ji R, Acheson A, Lindsay R, Wilkinson G, Woolf CJ (1999) Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A 3:9385–9390

    Article  Google Scholar 

  5. Clark C, Hasser E, Kunze D, Katz D, Kline D (2011) Endogenous brain-derived neurotrophic factor in the nucleus tractus solitarius tonically regulates synaptic and autonomic function. J Neurosci 24:12318–12329

    Article  Google Scholar 

  6. Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1–14

    PubMed  PubMed Central  Google Scholar 

  7. Cohen-Cory S, Kidane A, Shirkey N, Marshak S (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70:271–288

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW (2009) Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci U S A 106:17615–17622

    Article  CAS  Google Scholar 

  9. Sorkin A, von Zastrow M (2009) Endocytosis and signaling: intertwining molecular networks. Nat Rev Mol Cell Biol 10:609–622

    Article  CAS  Google Scholar 

  10. Sadowski L, Pilecka I, Miaczynska M (2009) Signaling from endosomes: location makes a difference. Exp Res 315:1601–1609

    Article  CAS  Google Scholar 

  11. Lazo O, Gonzalez A, Ascaño M, Kuruvilla R, Couve A, Bronfman F (2013) BDNF regulates Rab11-mediated recycling endosome dynamics to induce dendritic branching. J Neurosci 33:6112–6122

    Article  CAS  Google Scholar 

  12. Huang S-H, Wang J, Sui W-H, Chen B, Zhang X-Y, Yan J, Geng Z, Chen Z-Y (2013) BDNF-dependent recycling facilitates TrkB translocation to postsynaptic density during LTP via a Rab11-dependent pathway. J Neurosci 33:9214–9230

    Article  CAS  Google Scholar 

  13. Ouyang Q, Lizarraga SB, Schmidt M, Yang U, Gong J, Ellisor D, Kauer JA, Morrow EM (2013) Christianson syndrome protein NHE6 modulates TrkB endosomal signaling required for neuronal circuit development. Neuron https://doi.org/10.1016/j.neuron.2013.07.043

    Article  CAS  Google Scholar 

  14. Salinas S, Bilsland L, Schiavo G (2008) Molecular landmarks along the axonal route: axonal transport in health and disease. Curr Opin Cell Biol 20:445–453

    Article  CAS  Google Scholar 

  15. Poon WW, Carlos AJ, Aguilar BL, Berchtold NC, Kawano CK, Zograbyan V, Yaopruke T, Shelanski M, Cotman CW (2013) β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1. J Biol Chem 288:16937–16948

    Article  CAS  Google Scholar 

  16. Allen SJ, Dawbarn D (2006) Clinical relevance of the neurotrophins and their receptors. Clin Sci 110:175–191

    Article  CAS  Google Scholar 

  17. Chao MV, Rajagopal R, Lee FS (2006) Neurotrophin signalling in health and disease. Clin Sci 110:167–173

    Article  CAS  Google Scholar 

  18. Sah D, Ossipov M, Porreca F (2003) Neurotrophic factors as novel therapeutics for neuropathic pain. Nature 2:460–472

    CAS  Google Scholar 

  19. Chang Y-P, Pinaud F, Antelman J, Weiss S (2008) Tracking bio-molecules in live cells using quantum dots. J Biophotonics 1:287–298

    Article  CAS  Google Scholar 

  20. Vu TQ, Lam W, Hatch E, Lidke D (2015) Quantum dots for quantitative imaging: from single molecules to tissue. Cell Tissue Res 360:71–86

    Article  CAS  Google Scholar 

  21. Poon WW, Blurton-Jones M, Tu CH, Feinberg LM, Chabrier MA, Harris JW, Jeon NL, Cotman CW (2011) β-amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 32:821–833

    Article  CAS  Google Scholar 

  22. Zhou B, Cai Q, Xie Y, Sheng Z (2012) Snapin recruits dynein to BDNF-TrkB signaling endosomes for retrograde axonal transport and is essential for dendrite growth of cortical neurons. Cell Rep 2:42–51

    Article  CAS  Google Scholar 

  23. Matusica D, EJ C (2014) Local versus long-range neurotrophin receptor signalling: endosomes are not just carriers for axonal transport. Semin Cell Dev Biol 31:57–63

    Article  CAS  Google Scholar 

  24. Bronfman F, Lazo O, Flores C, Escudero C (2014) Spatiotemporal intracellular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function. Handb Exp Pharmacol 220:33–65

    Article  CAS  Google Scholar 

  25. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  CAS  Google Scholar 

  26. Groc L, Lafourcade M, Heine M, Renner M, Racine V, Sibarita J-B, Lounis B, Choquet D, Cognet L (2007) Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. J Neurosci 27:12433–12437

    Article  CAS  Google Scholar 

  27. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24

    Article  CAS  Google Scholar 

  28. Pinaud F, Clarke S, Stittner A, Dahan M (2010) Probing cellular events, one quantum dot at a time. Nat Methods 7(4):275–285

    Article  CAS  Google Scholar 

  29. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnosis. Science 307:538–544

    Article  CAS  Google Scholar 

  30. Fichter KM, Flajolet M, Greengard P, Vu TQ (2010) Kinetics of G-protein-coupled receptor endosomal trafficking pathways revealed by single quantum dots. Proc Natl Acad Sci U S A 107:18658–18663 doi: 1013763107 [pii] 10.1073/pnas.1013763107

    Article  CAS  Google Scholar 

  31. Zhang K, Osakada Y, Vrljic M, Chen L, Mudrakola H, Cui B (2010) Single molecule imaging of NGF axonal transport in microfluidic devices. Lab Chip 10:2566–2573

    Article  CAS  Google Scholar 

  32. Cui B, Wu C, Chen L, Ramirez A, Bearer E, Li W-P, Mobley W, Chu S (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci U S A 104:13666–13671

    Article  CAS  Google Scholar 

  33. Sung K, Maloney M, Yang J, Wu C (2011) A novel method for producing mono-biotinylated, biologically active neurotrophic factors: an essential reagent for single molecule study of axonal transport. J Neurosci Methods 200:121–128

    Article  CAS  Google Scholar 

  34. Xie W, Zhang K, Cui B (2012) Functional characterization and axonal transport of quantum dot labeled BDNF. Integr Biol 4:953–960

    Article  CAS  Google Scholar 

  35. Zhao X, Zhou Y, Weissmiller A, Pearn M, Mobley W, Wu C (2014) Real-time imaging of axonal transport of quantum dot-labeled BDNF in primary neurons. J Vis Exp (91):51899

    Google Scholar 

  36. Sundara Rajan S, Vu TQ (2006) Quantum dots monitor TrkA receptor dynamics in the interior of neural PC12 cells. Nano Lett 6:2049–2059

    Article  Google Scholar 

  37. Sundara Rajan S, Yan Kiu H, Vu T (2008) Ligand-bound quantum dot probes for studying the molecular scale dynamics of receptor endocytic trafficking in live cells. ACS Nano 2:1153–1166

    Article  Google Scholar 

  38. Vu T, Maddipati R, Blute TA, Nehilla BJ, Nusblat L, Desai TA (2005) Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Lett 5:603–607

    Article  CAS  Google Scholar 

  39. Vermehren-Schmaedick A, Wesley K, Jacob T, Ramunno-Johnson D, Balkowiec A, Lidke KA, Vu T (2014) Heterogeneous intracellular trafficking dynamics of brain-derived neurotrophic factor complexes in the neuronal Soma revealed by single quantum dot tracking. PLoS One 9:1–13

    Article  Google Scholar 

  40. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N (2010) Computer control of microscopes using micro manager. Curr Protoc Mol Biol Chapter 14:Unit 14 20. doi: https://doi.org/10.1002/0471142727.mb1420s92

  41. Kaech S, Banker G (2007) Culturing hippocampal neurons. Nat Protoc 1:2406–2415

    Article  Google Scholar 

  42. Sbalzarini I, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151:182–195

    Article  CAS  Google Scholar 

  43. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702

    Article  CAS  Google Scholar 

  44. Luengo Hendriks C, Rieger B, van Ginkel M, van Kempen G, van Vliet L (1999) DIPimage: a scientific image processing toolbox for MATLAB. Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  45. Zhongming L, Piechowicz M, Qiu S (2016) A simplified method for ultra-low density, long-term primary hippocampal neuron culture. J Vis Exp (109):1–8

    Google Scholar 

Download references

Acknowledgment

This work was supported by NIH-NINDS R01 NS071116 01 and W81XWH-07-2-0107 to T.Q.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Q. Vu .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

This movie shows tracking of several quantum dot-labeled brain-derived neurotrophic factors (QD-BDNFs) bound to TrkB receptors moving along distal axons to the cell body. Most of the selected trajectories exhibit the active/pause transport dynamics that characterizes the primary motion observed along axons. Some trajectories are apparently stationary or confined and are shown for comparison to the active behavior. The first half of the movie shows dynamic tracking from a 2D perspective where colors distinguish different particle trajectories, and we also show a 3D flyover of a static rendering of the trajectories in x, y, and time dimensions. Of particular interest is the nature of the pauses in the active transport trajectories which are well resolved at our high spatiotemporal tracking resolutions. (MP4 14001 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vermehren-Schmaedick, A., Jacob, T., Vu, T.Q. (2018). Methodology for Detecting and Tracking Brain-Derived Neurotrophic Factor Complexes in Neurons Using Single Quantum Dots. In: Duarte, C., Tongiorgi, E. (eds) Brain-Derived Neurotrophic Factor (BDNF). Neuromethods, vol 143. Humana, New York, NY. https://doi.org/10.1007/7657_2018_11

Download citation

  • DOI: https://doi.org/10.1007/7657_2018_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8969-0

  • Online ISBN: 978-1-4939-8970-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics