BDNF-Induced Intracellular Signaling

  • João R. GomesEmail author
  • Andrea Lobo
  • Carlos B. Duarte
  • Mário Grãos
Part of the Neuromethods book series (NM, volume 143)


The neurotrophin BDNF plays important roles in neuronal survival, growth, and differentiation during development. Furthermore, it has been shown to mediate long-term changes in the synaptic activity in the hippocampus and in other brain regions, which are thought to underlie learning and memory formation. Cultured hippocampal neurons express TrkB receptors and, therefore, constitute a valuable experimental model to study in vitro BDNF-induced intracellular signaling pathways. In this chapter, we describe (1) the methodology used to prepare cultured hippocampal neurons from mice (wild-type-WT or transgenic animals) and rats and (2) three different approaches to investigate BDNF signaling: Western blot and Bio-Plex for overall signaling activity and immunocytochemistry to analyze where signaling activity takes place in neurons. The Bio-Plex approach allows the simultaneous characterization of different pathways using small sample volumes and within a short period of time.


Akt Bio-Plex Cultured hippocampal neurons ERK Immunocytochemistry Phospholipase C Western blot 


  1. 1.
    Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11(3):272–280CrossRefGoogle Scholar
  2. 2.
    Almeida RD, Duarte CB (2014) p75NTR processing and signaling: functional role. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer, New York, NY, pp 1899–1923. CrossRefGoogle Scholar
  3. 3.
    Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17(7):2295–2313CrossRefGoogle Scholar
  4. 4.
    Rauskolb S, Zagrebelsky M, Dreznjak A, Deogracias R, Matsumoto T, Wiese S, Erne B, Sendtner M, Schaeren-Wiemers N, Korte M, Barde YA (2010) Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J Neurosci 30(5):1739–1749. CrossRefPubMedGoogle Scholar
  5. 5.
    Ip NY, Li Y, Yancopoulos GD, Lindsay RM (1993) Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J Neurosci 13(8):3394–3405CrossRefGoogle Scholar
  6. 6.
    Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35(5):567–576. CrossRefPubMedGoogle Scholar
  7. 7.
    Acheson A, Barker PA, Alderson RF, Miller FD, Murphy RA (1991) Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron 7(2):265–275CrossRefGoogle Scholar
  8. 8.
    Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438(7070):1017–1021. CrossRefPubMedGoogle Scholar
  9. 9.
    Climent E, Sancho-Tello M, Minana R, Barettino D, Guerri C (2000) Astrocytes in culture express the full-length Trk-B receptor and respond to brain derived neurotrophic factor by changing intracellular calcium levels: effect of ethanol exposure in rats. Neurosci Lett 288(1):53–56CrossRefGoogle Scholar
  10. 10.
    Araki Y, Zeng M, Zhang M, Huganir RL (2015) Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85(1):173–189. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Brewer GJ, Price PJ (1996) Viable cultured neurons in ambient carbon dioxide and hibernation storage for a month. Neuroreport 7(9):1509–1512CrossRefGoogle Scholar
  12. 12.
    Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415. CrossRefPubMedGoogle Scholar
  13. 13.
    Fath T, Ke YD, Gunning P, Gotz J, Ittner LM (2009) Primary support cultures of hippocampal and substantia nigra neurons. Nat Protoc 4(1):78–85. CrossRefPubMedGoogle Scholar
  14. 14.
    Jeanneteau F, Garabedian MJ, Chao MV (2008) Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc Natl Acad Sci U S A 105(12):4862–4867. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cazorla M, Premont J, Mann A, Girard N, Kellendonk C, Rognan D (2011) Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 121(5):1846–1857. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cazorla M, Jouvenceau A, Rose C, Guilloux JP, Pilon C, Dranovsky A, Premont J (2010) Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS One 5(3):e9777. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ramer LM, McPhail LT, Borisoff JF, Soril LJ, Kaan TK, Lee JH, Saunders JW, Hwi LP, Ramer MS (2007) Endogenous TrkB ligands suppress functional mechanosensory plasticity in the deafferented spinal cord. J Neurosci 27(21):5812–5822. CrossRefPubMedGoogle Scholar
  18. 18.
    Gomes JR, Costa JT, Melo CV, Felizzi F, Monteiro P, Pinto MJ, Inacio AR, Wieloch T, Almeida RD, Graos M, Duarte CB (2012) Excitotoxicity downregulates TrkB.FL signaling and upregulates the neuroprotective truncated TrkB receptors in cultured hippocampal and striatal neurons. J Neurosci 32(13):4610–4622. CrossRefPubMedGoogle Scholar
  19. 19.
    Melo CV, Okumoto S, Gomes JR, Baptista MS, Bahr BA, Frommer WB, Duarte CB (2013) Spatiotemporal resolution of BDNF neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons. Neuroscience 237:66–86. CrossRefPubMedGoogle Scholar
  20. 20.
    Barnes DW, Sirbasku DA, Sato G (1984) Methods for preparation of media, supplements, and substrata for serum-free animal cell culture. A.R. Liss, New York, NYGoogle Scholar
  21. 21.
    Soussou WV, Yoon GJ, Brinton RD, Berger TW (2007) Neuronal network morphology and electrophysiologyof hippocampal neurons cultured on surface-treated multielectrode arrays. IEEE Trans Biomed Eng 54(7):1309–1320. CrossRefPubMedGoogle Scholar
  22. 22.
    Banker G, Goslin K (1998) Culturing nerve cells. MIT Press, Cambridge, MAGoogle Scholar
  23. 23.
    Kam L, Shain W, Turner JN, Bizios R (2001) Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin. Biomaterials 22(10):1049–1054CrossRefGoogle Scholar
  24. 24.
    Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Graos MM, Carvalho RF, Carvalho AP, Duarte CB (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12(10):1329–1343. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • João R. Gomes
    • 1
    • 2
    Email author
  • Andrea Lobo
    • 1
    • 3
  • Carlos B. Duarte
    • 4
    • 5
  • Mário Grãos
    • 4
  1. 1.Instituto de Investigação e Inovação em Saúde (I3S)University of PortoPortoPortugal
  2. 2.Molecular Neurobiology, IBMC-Institute for Molecular and Cell BiologyUniversity of PortoPortoPortugal
  3. 3.Addiction Biology, IBMC-Institute for Molecular and Cell BiologyUniversity of PortoPortoPortugal
  4. 4.CNC-Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  5. 5.Department of Life SciencesUniversity of CoimbraCoimbraPortugal

Personalised recommendations