Measuring miRNA Mediated Translational Regulation with Live Cell Imaging

Part of the Neuromethods book series (NM, volume 128)


Numerous microRNAs are detected in synaptic areas such as axons and dendrites. As accurate regulation of local protein synthesis can be crucial for the function of neurons, miRNAs can play very important roles for mRNA translation in the rather isolated cellular spaces such as synaptic area. However, due to the technical limitation, it is very difficult to measure efficiency of protein synthesis in the synaptic area with biochemical methods. Therefore, visualizing translation and measuring protein levels at the synaptic sites by imaging techniques can be a good alternative. Fluorescence recovery after photobleaching (FRAP) has been widely used to measure local protein synthesis rate in axons. This technique allows us to measure speed and efficiency of translation of certain mRNAs. We modified this method to measure how miRNAs influence on local synthesis of proteins in neurons.


MicroRNA Local translation Axon FRAP (fluorescence recovery after photobleaching) Live cell imaging 



This work is supported by Deutsche Forschungsgemeinschaft (KY-92/1), University of Cologne (Cologne Fortune), and Cure SMA.


  1. 1.
    Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289. doi: 10.1038/nature04367 CrossRefPubMedGoogle Scholar
  2. 2.
    Kye MJ, Liu T, Levy SF, Xu NL, Groves BB, Bonneau R, Lao K, Kosik KS (2007) Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA 13(8):1224–1234. doi: 10.1261/rna.480407 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Natera-Naranjo O, Aschrafi A, Gioio AE, Kaplan BB (2010) Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA 16(8):1516–1529. doi: 10.1261/rna.1833310 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Holt CE, Schuman EM (2013) The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80(3):648–657. doi: 10.1016/j.neuron.2013.10.036 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dieterich DC, Hodas JJ, Gouzer G, Shadrin IY, Ngo JT, Triller A, Tirrell DA, Schuman EM (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13(7):897–905. doi: 10.1038/nn.2580 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Taylor AM, Dieterich DC, Ito HT, Kim SA, Schuman EM (2010) Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron 66(1):57–68. doi: 10.1016/j.neuron.2010.03.022 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wu B, Eliscovich C, Yoon YJ, Singer RH (2016) Translation dynamics of single mRNAs in live cells and neurons. Science 352(6292):1430–1435. doi: 10.1126/science.aaf1084 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vuppalanchi D, Coleman J, Yoo S, Merianda TT, Yadhati AG, Hossain J, Blesch A, Willis DE, Twiss JL (2010) Conserved 3′-untranslated region sequences direct subcellular localization of chaperone protein mRNAs in neurons. J Biol Chem 285(23):18025–18038. doi: 10.1074/jbc.M109.061333 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yoon YJ, Wu B, Buxbaum AR, Das S, Tsai A, English BP, Grimm JB, Lavis LD, Singer RH (2016) Glutamate-induced RNA localization and translation in neurons. Proc Natl Acad Sci U S A 113(44):E6877–E6886. doi: 10.1073/pnas.1614267113 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Niehues S, Bussmann J, Steffes G, Erdmann I, Kohrer C, Sun L, Wagner M, Schafer K, Wang G, Koerdt SN, Stum M, Jaiswal S, RajBhandary UL, Thomas U, Aberle H, Burgess RW, Yang XL, Dieterich D, Storkebaum E (2015) Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases. Nat Commun 6:7520. doi: 10.1038/ncomms8520 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Akten B, Kye MJ, Hao le T, Wertz MH, Singh S, Nie D, Huang J, Merianda TT, Twiss JL, Beattie CE, Steen JA, Sahin M (2011) Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc Natl Acad Sci U S A 108(25):10337–10342. 1104928108 [pii]. doi: 10.1073/pnas.1104928108 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rathod R, Havlicek S, Frank N, Blum R, Sendtner M (2012) Laminin induced local axonal translation of beta-actin mRNA is impaired in SMN-deficient motoneurons. Histochem Cell Biol 138(5):737–748. doi: 10.1007/s00418-012-0989-1 CrossRefPubMedGoogle Scholar
  13. 13.
    Nie D, Di Nardo A, Han JM, Baharanyi H, Kramvis I, Huynh T, Dabora S, Codeluppi S, Pandolfi PP, Pasquale EB, Sahin M (2010) Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci 13(2):163–172. doi: 10.1038/nn.2477 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Spinelli KJ, Taylor JK, Osterberg VR, Churchill MJ, Pollock E, Moore C, Meshul CK, Unni VK (2014) Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease. J Neurosci 34(6):2037–2050. doi: 10.1523/JNEUROSCI.2581-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Banerjee S, Neveu P, Kosik KS (2009) A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 64(6):871–884. doi: 10.1016/j.neuron.2009.11.023 CrossRefPubMedGoogle Scholar
  16. 16.
    Kye MJ, Niederst ED, Wertz MH, Goncalves Ido C, Akten B, Dover KZ, Peters M, Riessland M, Neveu P, Wirth B, Kosik KS, Sardi SP, Monani UR, Passini MA, Sahin M (2014) SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 23(23):6318–6331. doi: 10.1093/hmg/ddu350 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Risbud RM, Porter BE (2013) Changes in microRNA expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus. PLoS One 8(1):e53464. doi: 10.1371/journal.pone.0053464 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Boese AS, Saba R, Campbell K, Majer A, Medina S, Burton L, Booth TF, Chong P, Westmacott G, Dutta SM, Saba JA, Booth SA (2016) MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol Cell Neurosci 71:13–24. doi: 10.1016/j.mcn.2015.12.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Human GeneticsUniversity of CologneCologneGermany

Personalised recommendations