Skip to main content

Analysis of MicroRNAs and their Potential Targets in Human Embryonic Stem Cell-Derived Neurons Treated with the Anesthetic Propofol

  • Protocol
  • First Online:
  • 599 Accesses

Part of the book series: Neuromethods ((NM,volume 128))

Abstract

Growing evidence demonstrates that prolonged exposure to general anesthetics, including propofol, induces widespread neuroapoptosis followed by long-term memory and learning disabilities in animal models. The underlying mechanisms of anesthetic-induced neurotoxicity are complex and not well understood. In addition, there is no direct clinical evidence of the detrimental effects of anesthetics in human fetuses, infants, or children. Development of an in vitro neurogenesis system of human stem cells opens up avenues of research for advancing our understanding of the issues of anesthetic-induced developmental neurotoxicity using a relevant human model. One avenue for investigating the mechanisms behind this neuroapoptosis is through evaluation of microRNA expression. MicroRNAs are endogenous, small, noncoding RNAs that negatively regulate target gene expression. MicroRNAs have been implicated to play important roles in many different disease processes, including neurological diseases. Our recent publication showed that among 84 microRNAs screened, propofol exposure altered the expression of 20 microRNAs in human embryonic stem cell (hESC)-derived neurons. Specifically, downregulation of microRNA-21 (miR-21) conferred by propofol played functional roles in the propofol-induced neurotoxicity. In this chapter, we outline (1) the protocol of human neuron differentiation from stem cells and (2) the protocols for analyzing microRNA expression (using our miR-21 study as an example) by quantitative reverse transcription-PCR and screening potential targets of miR-21 by Western blot assay following propofol exposure in stem cell-derived human neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zheng H, Dong Y, Xu Z, Crosby G, Culley DJ, Zhang Y et al (2013) Sevoflurane anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice. Anesthesiology 118(3):516–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Loepke AW, Soriano SG (2008) An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg 106:1681–1707

    Article  PubMed  Google Scholar 

  3. Jevtovic-Todorovic V (2011) Pediatric anesthesia neurotoxicity: an overview of the 2011 SmartTots panel. Anesth Analg 113:965–968

    Article  PubMed  Google Scholar 

  4. Liu F, Paule MG, Ali S, Wang C (2011) Ketamine-induced neurotoxicity and changes in gene expression in the developing rat brain. Curr Neuropharmacol 9:256–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lemkuil BP, Head BP, Pearn ML, Patel HH, Drummond JC, Patel PM (2011) Isoflurane neurotoxicity is mediated by p75NTR-RhoA activation and actin depolymerization. Anesthesiology 114:49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun L (2010) Early childhood general anaesthesia exposure and neurocognitive development. Br J Anaesth 105(Suppl 1):i61–i68

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stratmann G, Sall JW, May LD, Bell JS, Magnusson KR, Rau V et al (2009) Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology 110:834–848

    Article  CAS  PubMed  Google Scholar 

  8. Samuelsen GB, Larsen KB, Bogdanovic N, Laursen H, Graem N, Larsen JF et al (2003) The changing number of cells in the human fetal forebrain and its subdivisions: a stereological analysis. Cereb Cortex 13:115–122

    Article  PubMed  Google Scholar 

  9. Dekaban AS (1978) Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 4:345–356

    Article  CAS  PubMed  Google Scholar 

  10. Davidson AJ, McCann ME, Morton NS, Myles PS (2008) Anesthesia and outcome after neonatal surgery: the role for randomized trials. Anesthesiology 109:941–944

    Article  PubMed  Google Scholar 

  11. Hansen TG, Flick R (2009) Anesthetic effects on the developing brain: insights from epidemiology. Anesthesiology 110:1–3

    Article  PubMed  Google Scholar 

  12. Istaphanous GK, Howard J, Nan X, Hughes EA, McCann JC, McAuliffe JJ et al (2011) Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology 114:578–587

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Dong Y, Wu X, Lu Y, Xu Z, Knapp A et al (2010) The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J Biol Chem 285:4025–4037

    Article  CAS  PubMed  Google Scholar 

  14. Sun LS, Li G, Dimaggio C, Byrne M, Rauh V, Brooks-Gunn J et al (2008) Anesthesia and neurodevelopment in children: time for an answer? Anesthesiology 109:757–761

    Article  PubMed  Google Scholar 

  15. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  16. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  18. Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM et al (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28:2167–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  20. Lee CT, Risom T, Strauss WM (2007) Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol 26:209–218

    Article  CAS  PubMed  Google Scholar 

  21. Shukla GC, Singh J, Barik S (2011) MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 3:83–92

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sathyan P, Golden HB, Miranda RC (2007) Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 27:8546–8557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A et al (2010) MicroRNA-21 protects neurons from ischemic death. FEBS J 277:4299–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Twaroski DM, Yan Y, Olson JM, Bosnjak ZJ, Bai X (2014) Down-regulation of MicroRNA-21 is involved in the propofol-induced neurotoxicity observed in human stem cell-derived neurons. Anesthesiology 121(4):786–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  26. Ge XT, Lei P, Wang HC, Zhang AL, Han ZL, Chen X et al (2014) miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 4:6718

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Tian J, Chen S, Zhang X, Cao SE (2014) Role of miR-34c in ketamine-induced neurotoxicity in neonatal mice hippocampus. Cell Biol Int. doi:10.1002/cbin.10349

    Google Scholar 

  28. Xu H, Zhang J, Zhou W, Feng Y, Teng S, Song X (2015) The role of miR-124 in modulating hippocampal neurotoxicity induced by ketamine anesthesia. Int J Neurosci 125:213–220

    Article  CAS  PubMed  Google Scholar 

  29. Bosnjak ZJ, Yan Y, Canfield S, Muravyeva MY, Kikuchi C, Wells CW et al (2012) Ketamine induces toxicity in human neurons differentiated from embryonic stem cells via mitochondrial apoptosis pathway. Curr Drug Saf 7:106–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liao H, Huang W, Schachner M, Guan Y, Guo J, Yan J et al (2008) Beta 1 integrin-mediated effects of tenascin-R domains EGFL and FN6-8 on neural stem/progenitor cell proliferation and differentiation in vitro. J Biol Chem 283:27927–27936

    Article  CAS  PubMed  Google Scholar 

  31. Twaroski DM, Yan Y, Olson JM, Bosnjak ZJ, Bai X (2014) Down-regulation of microRNA-21 is involved in the propofol-induced neurotoxicity observed in human stem cell-derived neurons. Anesthesiology 121:786–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vutskits L, Gascon E, Tassonyi E, Kiss JZ (2005) Clinically relevant concentrations of propofol but not midazolam alter in vitro dendritic development of isolated gamma-aminobutyric acid-positive interneurons. Anesthesiology 102:970–976

    Article  CAS  PubMed  Google Scholar 

  33. Chung HG, Myung SA, Son HS, Kim YH, Namgung J, Cho ML et al (2013) In vitro effect of clinical propofol concentrations on platelet aggregation. Artif Organs 37:E51–E55

    Article  CAS  PubMed  Google Scholar 

  34. Ludbrook GL, Visco E, Lam AM (2002) Propofol: relation between brain concentrations, electroencephalogram, middle cerebral artery blood flow velocity, and cerebral oxygen extraction during induction of anesthesia. Anesthesiology 97:1363–1370

    Article  CAS  PubMed  Google Scholar 

  35. Costela JL, Jimenez R, Calvo R, Suarez E, Carlos R (1996) Serum protein binding of propofol in patients with renal failure or hepatic cirrhosis. Acta Anaesthesiol Scand 40:741–745

    Article  CAS  PubMed  Google Scholar 

  36. Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C (2009) MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47:5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Buscaglia LE, Li Y (2011) Apoptosis and the target genes of microRNA-21. Chin J Cancer 30:371–380

    Article  PubMed  PubMed Central  Google Scholar 

  38. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jevtovic-Todorovic V (2012) Developmental synaptogenesis and general anesthesia: a kiss of death? Curr Pharm Des 18:6225–6231

    Article  CAS  PubMed  Google Scholar 

  40. Lunardi N, Ori C, Erisir A, Jevtovic-Todorovic V (2010) General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats. Neurotox Res 17:179–188

    Article  CAS  PubMed  Google Scholar 

  41. Bai X, Yan Y, Canfield S, Muravyeva MY, Kikuchi C, Zaja I et al (2013) Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg 116:869–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    Article  CAS  PubMed  Google Scholar 

  43. Creeley C, Dikranian K, Dissen G, Martin L, Olney J, Brambrink A (2013) Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth 110(Suppl 1):i29–i38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Milanovic D, Popic J, Pesic V, Loncarevic-Vasiljkovic N, Kanazir S, Jevtovic-Todorovic V et al (2010) Regional and temporal profiles of calpain and caspase-3 activities in postnatal rat brain following repeated propofol administration. Dev Neurosci 32:288–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dong C, Anand KJ (2013) Developmental neurotoxicity of ketamine in pediatric clinical use. Toxicol Lett 220:53–60

    Article  CAS  PubMed  Google Scholar 

  46. Scallet AC, Schmued LC, Slikker W Jr, Grunberg N, Faustino PJ, Davis H et al (2004) Developmental neurotoxicity of ketamine: morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons. Toxicol Sci 81:364–370

    Article  CAS  PubMed  Google Scholar 

  47. Lam B, Simkin M, Rghei N, Haj-Ahmad Y (2012) Revised guidelines for rna quality assessment for diverse biological sample input. https://norgenbiotek.com/sites/default/files/resources/ffpe_rna_purification_kit_revised_guidelines_for_rna_quality_assessment_for_diverse_biological_sample_input_application_notes_63.pdf

  48. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18:505–516

    Article  CAS  PubMed  Google Scholar 

  49. Roese-Koerner B, Stappert L, Koch P, Brustle O, Borghese L (2013) Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development. Curr Mol Med 13:707–722

    Article  CAS  PubMed  Google Scholar 

  50. Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H et al (2008) MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19:3272–3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gross I, Armant O, Benosman S, de Aguilar JL, Freund JN, Kedinger M et al (2007) Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death Differ 14:1802–1812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by R01GM112696 from the NIH (to Dr. Xiaowen Bai), by P01GM066730 and R01HL034708 from the NIH, Bethesda, MD, and by FP00003109 from Advancing a Healthier Wisconsin Research and Education Initiative Fund (to Dr. Zeljko J. Bosnjak).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Twaroski, D., Yan, Y., Olson, J.M., Liang, M., Bosnjak, Z.J., Bai, X. (2016). Analysis of MicroRNAs and their Potential Targets in Human Embryonic Stem Cell-Derived Neurons Treated with the Anesthetic Propofol. In: Kye, M. (eds) MicroRNA Technologies. Neuromethods, vol 128. Humana Press, New York, NY. https://doi.org/10.1007/7657_2016_2

Download citation

  • DOI: https://doi.org/10.1007/7657_2016_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7173-2

  • Online ISBN: 978-1-4939-7175-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics