Skip to main content

Study of miRNA Function in the Developing Axons of Mouse Cortical Neurons: Use of Compartmentalized Microfluidic Chambers and In Utero Electroporation

  • Protocol
  • First Online:
MicroRNA Technologies

Part of the book series: Neuromethods ((NM,volume 128))

Abstract

The understanding of brain function requires the study of the cellular and molecular mechanisms that govern the growth and development of neuron connections. This is a process driven by the polarization of the neuron into a highly structured morphology with dendritic arborizations and a long axonal projection. In recent years, miRNAs have been described as key players in these processes, both at the level of axon development and synaptic plasticity. Here, we describe a microfluidic compartmentalized cortical neuron culture and the in utero electroporation techniques for the study of miRNAs and their role in axon development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams RW, Herrup K (1988) The control of neuron number. Annu Rev Neurosci 11:423–453

    Article  CAS  PubMed  Google Scholar 

  2. Lewis TL, Courchet J, Polleux F (2013) Cell biology in neuroscience: cellular and molecular mechanisms underlying axon formation, growth, and branching. J Cell Biol 202:837–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jung H, Yoon BC, Holt CE (2012) Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 13:308–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19:586–593

    Article  CAS  PubMed  Google Scholar 

  6. McNeill E, Van Vactor D (2012) MicroRNAs shape the neuronal landscape. Neuron 75:363–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dajas-Bailador F et al (2012) microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci 15:697–699

    Article  CAS  Google Scholar 

  8. Kaplan BB, Kar AN, Gioio AE, Aschrafi A (2013) MicroRNAs in the axon and presynaptic nerve terminal. Front Cell Neurosci 7:126

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chiu H, Alqadah A, Chang C (2014) The role of microRNAs in regulating neuronal connectivity. Front Cell Neurosci 7:283

    Article  PubMed  PubMed Central  Google Scholar 

  10. Olde Loohuis NFM et al (2011) MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 69:89–102

    Article  PubMed  PubMed Central  Google Scholar 

  11. Taylor AM et al (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Millet LJ, Gillette MU (2012) New perspectives on neuronal development via microfluidic environments. Trends Neurosci 35:752–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park JW, Vahidi B, Taylor AM, Rhee SW, Jeon NL (2006) Microfluidic culture platform for neuroscience research. Nat Protoc 1:2128–2136

    Article  CAS  PubMed  Google Scholar 

  14. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246

    Article  CAS  PubMed  Google Scholar 

  15. Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872

    Article  CAS  PubMed  Google Scholar 

  16. Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A 104:1027–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Azzarelli R et al (2014) An antagonistic interaction between PlexinB2 and Rnd3 controls RhoA activity and cortical neuron migration. Nat Commun 5:3405

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garcez PP et al (2015) Cenpj/CPAP regulates progenitor divisions and neuronal migration in the cerebral cortex downstream of Ascl1. Nat Commun 6:6474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cancedda L, Fiumelli H, Chen K, Poo M-M (2007) Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J Neurosci 27:5224–5235

    Article  CAS  PubMed  Google Scholar 

  20. Wang C-L et al (2007) Activity-dependent development of callosal projections in the somatosensory cortex. J Neurosci 27:11334–11342

    Article  CAS  PubMed  Google Scholar 

  21. Haas MA et al (2013) Alterations to dendritic spine morphology, but not dendrite patterning, of cortical projection neurons in Tc1 and Ts1Rhr mouse models of down syndrome. PLoS One 8:e78561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hengst U, Cox LJ, Macosko EZ, Jaffrey SR (2006) Functional and selective RNA interference in developing axons and growth cones. J Neurosci 26:5727–5732

    Article  CAS  PubMed  Google Scholar 

  23. Hengst U, Deglincerti A, Kim HJ, Jeon NL, Jaffrey SR (2009) Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat Cell Biol 11:1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gracias NG, Shirkey-Son NJ, Hengst U (2014) Local translation of TC10 is required for membrane expansion during axon outgrowth. Nat Commun 5:3506

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dajas-Bailador F, Bantounas I, Jones EV, Whitmarsh AJ (2014) Regulation of axon growth by the JIP1-AKT axis. J Cell Sci 127:230–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zala D et al (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152:479–491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yolanda Saavedra Torres for the comments on the manuscript and Wai Han Wong for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Dajas-Bailador .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Garcez, P.P., Guillemot, F., Dajas-Bailador, F. (2016). Study of miRNA Function in the Developing Axons of Mouse Cortical Neurons: Use of Compartmentalized Microfluidic Chambers and In Utero Electroporation. In: Kye, M. (eds) MicroRNA Technologies. Neuromethods, vol 128. Humana Press, New York, NY. https://doi.org/10.1007/7657_2016_12

Download citation

  • DOI: https://doi.org/10.1007/7657_2016_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7173-2

  • Online ISBN: 978-1-4939-7175-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics