Skip to main content

Advances in Neuroscience Using Transmission Electron Microscopy: A Historical Perspective

  • Protocol
  • First Online:
Transmission Electron Microscopy Methods for Understanding the Brain

Part of the book series: Neuromethods ((NM,volume 115))

Abstract

Unlike light and fluorescence microscopy techniques that may provide only limited resolution, transmission electron microscopy (TEM) allows enhanced subcellular precision by enabling high resolution of varied specimens. Although the first TEM was invented in 1931, the widespread use of TEM for biological studies did not start until the 1940’s. From that time onward, TEM has revolutionized our knowledge and understanding of cellular processes. More importantly, the use of TEM has greatly advanced neuroscience research by defining the presence of synaptic specializations, the organization of synaptic vesicles, the identification of protein machinery in dendrites, and neural circuit organization. Combined with the use of autoradiography, immunocytochemistry, tract-tracing among others, the neurochemical signature of defined synaptic circuits have been characterized. Thus, with TEM’s enormous investigative power, it will continue to serve as a major analytical tool in both physical and biological research. This Chapter describes seminal events utilizing TEM that have provided tremendous advances in field of neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nobelprize.org (2014) The Nobel Prize in Physics 1986—Perspectives. Web

    Google Scholar 

  2. Knott G, Genoud C (2013) Is EM dead? J Cell Sci 126(Pt 20):4545–4552

    Article  CAS  PubMed  Google Scholar 

  3. Jensen EC (2012) Types of imaging, Part 1: Electron microscopy. Anat Rec (Hoboken) 295(5):716–721

    Article  Google Scholar 

  4. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung—I. Die Construction von Mikroskopen auf Grund der Theorie. Arch Mikrosk Anat 9(1):6

    Google Scholar 

  5. Abbe E (1876) A contribution to the theory of the microscope and the nature of microscopic vision. In: Proceedings of the Bristol Naturalists’ Society. Williams & Northgate, London, UK

    Google Scholar 

  6. Ultraviolet microscope (2015) In Encyclopædia britannica. http://www.britannica.com/technology/microscope/The-theory-of-image-formation

  7. Ruska E (1980) The early development of electron lenses and electron microscopy. S. Hirzel, Stuttgart, Translation by T Mulvey. ISBN 3-7776-0364-3

    Google Scholar 

  8. Plücker J (1858) Über die Einwirkung des Magneten auf die elektischen Entladungen in verdünnten Gasen [On the effect of a magnet on the electric discharge in raarified gases]. Poggendorffs Annalen der Physik und Chemie 103:88–106

    Article  Google Scholar 

  9. Broglie LD (1928) La nouvelle dynamique des quanta. In Électrons et Photons: Rapports et Discussions du Cinquième Conseil de Physique, Solvay

    Google Scholar 

  10. Bradley DE (1958) Simultaneous evaporation of platinum and carbon for possible use in high-resolution shadow-casting for the electron microscope. Nature 181(4613):875–877

    Article  CAS  PubMed  Google Scholar 

  11. Brenner S, Horne RW (1959) A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta 34:103–110

    Article  CAS  PubMed  Google Scholar 

  12. Adrian M et al (1984) Cryo-electron microscopy of viruses. Nature 308(5954):32–36

    Article  CAS  PubMed  Google Scholar 

  13. McDowall AW et al (1984) Cryo-electron microscopy of vitrified insect flight muscle. J Mol Biol 178(1):105–111

    Article  CAS  PubMed  Google Scholar 

  14. Baumeister W (2005) A voyage to the inner space of cells. Protein Sci 14(1):257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kruger DH, Schneck P, Gelderblom HR (2000) Helmut Ruska and the visualisation of viruses. Lancet 355(9216):1713–1717

    Article  CAS  PubMed  Google Scholar 

  16. Newman SB, Borysko E, Swerdlow M (1949) New sectioning techniques for light and electron microscopy. Science 110(2846):66–68

    Article  CAS  PubMed  Google Scholar 

  17. Porter KR, Blum J (1953) A study in microtomy for electron microscopy. Anat Rec 117(4):685–710

    Article  CAS  PubMed  Google Scholar 

  18. Palade GE (1952) The fine structure of mitochondria. Anat Rec 114(3):427–451

    Article  CAS  PubMed  Google Scholar 

  19. Palade GE, Porter KR (1954) Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J Exp Med 100(6):641–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dalton AJ, Felix MD (1954) Cytologic and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis in situ, in homogenates and after isolation. Am J Anat 94(2):171–207

    Article  CAS  PubMed  Google Scholar 

  21. Armstrong PB (1970) A fine structural study of adhesive cell junctions in heterotypic cell aggregates. J Cell Biol 47(1):197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goel SC (1970) Electron microscopic studies on developing cartilage. I. The membrane system related to the synthesis and secretion of extracellular materials. J Embryol Exp Morphol 23(1):169–184

    CAS  PubMed  Google Scholar 

  23. Kirschner RH, Rusli M, Martin TE (1977) Characterization of the nuclear envelope, pore complexes, and dense lamina of mouse liver nuclei by high resolution scanning electron microscopy. J Cell Biol 72(1):118–132

    Article  CAS  PubMed  Google Scholar 

  24. Huxley HE (1957) The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol 3(5):631–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palay SL, Palade GE (1955) The fine structure of neurons. J Biophys Biochem Cytol 1(1):69–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peters A, Palay SL, Webster HD (1991) The fine structure of the nervous system, 3rd edn. Oxford University Press, New York

    Google Scholar 

  27. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Torrealba F, Carrasco MA (2004) A review on electron microscopy and neurotransmitter systems. Brain Res Brain Res Rev 47(1–3):5–17

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Muller JF, McDonald AJ (2013) Noradrenergic innervation of pyramidal cells in the rat basolateral amygdala. Neuroscience 228:395–408

    Article  CAS  PubMed  Google Scholar 

  30. Muller JF, Mascagni F, McDonald AJ (2011) Cholinergic innervation of pyramidal cells and parvalbumin-immunoreactive interneurons in the rat basolateral amygdala. J Comp Neurol 519(4):790–805

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nitecka L, Frotscher M (1989) Organization and synaptic interconnections of GABAergic and cholinergic elements in the rat amygdaloid nuclei: single- and double-immunolabeling studies. J Comp Neurol 279(3):470–488

    Article  CAS  PubMed  Google Scholar 

  32. Carlsen J, Heimer L (1986) A correlated light and electron microscopic immunocytochemical study of cholinergic terminals and neurons in the rat amygdaloid body with special emphasis on the basolateral amygdaloid nucleus. J Comp Neurol 244(1):121–136

    Article  CAS  PubMed  Google Scholar 

  33. Buma P, Roubos EW (1986) Ultrastructural demonstration of nonsynaptic release sites in the central nervous system of the snail Lymnaea stagnalis, the insect Periplaneta americana, and the rat. Neuroscience 17(3):867–879

    Article  CAS  PubMed  Google Scholar 

  34. Zhu PC, Thureson-Klein A, Klein RL (1986) Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release. Neuroscience 19(1):43–54

    Article  CAS  PubMed  Google Scholar 

  35. Agnati LF et al (1986) A correlation analysis of the regional distribution of central enkephalin and beta-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol Scand 128(2):201–207

    Article  CAS  PubMed  Google Scholar 

  36. Van Bockstaele EJ et al (1996) Ultrastructural evidence for prominent distribution of the mu-opioid receptor at extrasynaptic sites on noradrenergic dendrites in the rat nucleus locus coeruleus. J Neurosci 16(16):5037–5048

    PubMed  Google Scholar 

  37. Fuxe K et al (2015) Volume transmission in central dopamine and noradrenaline neurons and its astroglial targets. Neurochem Res 40(12):2600–2614

    Article  CAS  PubMed  Google Scholar 

  38. Lee A, Rosin DL, Van Bockstaele EJ (1998) alpha2A-adrenergic receptors in the rat nucleus locus coeruleus: subcellular localization in catecholaminergic dendrites, astrocytes, and presynaptic axon terminals. Brain Res 795(1–2):157–169

    Article  CAS  PubMed  Google Scholar 

  39. Steward O, Falk PM, Torre ER (1996) Ultrastructural basis for gene expression at the synapse: synapse-associated polyribosome complexes. J Neurocytol 25(12):717–734

    Article  CAS  PubMed  Google Scholar 

  40. Tarrant SB, Routtenberg A (1979) Postsynaptic membrane and spine apparatus: proximity in dendritic spines. Neurosci Lett 11(3):289–294

    Article  CAS  PubMed  Google Scholar 

  41. Tiedge H, Brosius J (1996) Translational machinery in dendrites of hippocampal neurons in culture. J Neurosci 16(22):7171–7181

    CAS  PubMed  Google Scholar 

  42. Pierce JP, van Leyen K, McCarthy JB (2000) Translocation machinery for synthesis of integral membrane and secretory proteins in dendritic spines. Nat Neurosci 3(4):311–313

    Article  CAS  PubMed  Google Scholar 

  43. Frotscher M (1992) Application of the Golgi/electron microscopy technique for cell identification in immunocytochemical, retrograde labeling, and developmental studies of hippocampal neurons. Microsc Res Tech 23(4):306–323

    Article  CAS  PubMed  Google Scholar 

  44. Fairen A (2005) Pioneering a golden age of cerebral microcircuits: the births of the combined Golgi-electron microscope methods. Neuroscience 136(3):607–614

    Article  CAS  PubMed  Google Scholar 

  45. Blackstad TW (1965) Mapping of experimental axon degeneration by electron microscopy of Golgi preparations. Z Zellforsch Mikrosk Anat 67(6):819–834

    Article  CAS  PubMed  Google Scholar 

  46. Stell WK (1965) Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anat Rec 153(4):389–397

    Article  CAS  PubMed  Google Scholar 

  47. Blackstad TW (1975) Electron microscopy of experimental axonal degeneration in photochemically modified Golgi preparations: a procedure for precise mapping of nervous connections. Brain Res 95(2–3):191–210

    Article  CAS  PubMed  Google Scholar 

  48. Fairen A, Peters A, Saldanha J (1977) A new procedure for examining Golgi impregnated neurons by light and electron microscopy. J Neurocytol 6(3):311–337

    Article  CAS  PubMed  Google Scholar 

  49. Freund TF, Somogyi P (1983) The section-Golgi impregnation procedure. 1. Description of the method and its combination with histochemistry after intracellular iontophoresis or retrograde transport of horseradish peroxidase. Neuroscience 9(3):463–474

    Article  CAS  PubMed  Google Scholar 

  50. Somogyi P et al (1983) The section-Golgi impregnation procedure. 2. Immunocytochemical demonstration of glutamate decarboxylase in Golgi-impregnated neurons and in their afferent synaptic boutons in the visual cortex of the cat. Neuroscience 9(3):475–490

    Article  CAS  PubMed  Google Scholar 

  51. Diana M, Spiga S, Acquas E (2006) Persistent and reversible morphine withdrawal-induced morphological changes in the nucleus accumbens. Ann N Y Acad Sci 1074:446–457

    Article  CAS  PubMed  Google Scholar 

  52. Pilati N et al (2008) A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture. J Histochem Cytochem 56(6):539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pinto L et al (2012) Immuno-Golgi as a tool for analyzing neuronal 3D-dendritic structure in phenotypically characterized neurons. PLoS One 7(3):e33114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Spiga S et al (2011) Simultaneous Golgi-Cox and immunofluorescence using confocal microscopy. Brain Struct Funct 216(3):171–182

    Article  PubMed  PubMed Central  Google Scholar 

  55. Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 11(5):1598–1604

    Article  CAS  PubMed  Google Scholar 

  56. Carvalho AF et al (2016) Repeated administration of a synthetic cannabinoid receptor agonist differentially affects cortical and accumbal neuronal morphology in adolescent and adult rats. Brain Struct Funct 221(1):407–419

    Article  CAS  PubMed  Google Scholar 

  57. Falowski SM et al (2011) An evaluation of neuroplasticity and behavior after deep brain stimulation of the nucleus accumbens in an animal model of depression. Neurosurgery 69(6):1281–1290

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Invest 39:1157–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. von Baumgarten F, Baumgarten HG, Schlossberger HG (1980) The disposition of intraventricularly injected 14C-5,6-DHT-melanin in, and possible routes of elimination from the rat CNS. An autoradiographic study. Cell Tissue Res 212(2):279–294

    Article  PubMed  Google Scholar 

  60. Ryals BM, Westbrook EW (1994) TEM analysis of neural terminals on autoradiographically identified regenerated hair cells. Hear Res 72(1–2):81–88

    Article  CAS  PubMed  Google Scholar 

  61. Porstmann B et al (1985) Which of the commonly used marker enzymes gives the best results in colorimetric and fluorimetric enzyme immunoassays: horseradish peroxidase, alkaline phosphatase or beta-galactosidase? J Immunol Methods 79(1):27–37

    Article  CAS  PubMed  Google Scholar 

  62. Krieg R, Halbhuber KJ (2010) Detection of endogenous and immuno-bound peroxidase—the status quo in histochemistry. Prog Histochem Cytochem 45(2):81–139

    Article  PubMed  Google Scholar 

  63. Trojanowski JQ, Obrocka MA, Lee VM (1983) A comparison of eight different chromogen protocols for the demonstration of immunoreactive neurofilaments or glial filaments in rat cerebellum using the peroxidase-antiperoxidase method and monoclonal antibodies. J Histochem Cytochem 31(10):1217–1223

    Article  CAS  PubMed  Google Scholar 

  64. Giepmans BN et al (2005) Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nat Methods 2(10):743–749

    Article  CAS  PubMed  Google Scholar 

  65. Maranto AR (1982) Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy. Science 217(4563):953–955

    Article  CAS  PubMed  Google Scholar 

  66. Lubke J (1993) Photoconversion of diaminobenzidine with different fluorescent neuronal markers into a light and electron microscopic dense reaction product. Microsc Res Tech 24(1):2–14

    Article  CAS  PubMed  Google Scholar 

  67. von Bartheld CS, Cunningham DE, Rubel EW (1990) Neuronal tracing with DiI: decalcification, cryosectioning, and photoconversion for light and electron microscopic analysis. J Histochem Cytochem 38(5):725–733

    Article  Google Scholar 

  68. Sandell JH, Masland RH (1988) Photoconversion of some fluorescent markers to a diaminobenzidine product. J Histochem Cytochem 36(5):555–559

    Article  CAS  PubMed  Google Scholar 

  69. Singer SJ (1959) Preparation of an electron-dense antibody conjugate. Nature 183(4674):1523–1524

    Article  CAS  PubMed  Google Scholar 

  70. Feldherr CM, Marshall JM Jr (1962) The use of colloidal gold for studies of intracellular exchanges in the ameba Chaos chaos. J Cell Biol 12:640–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Faulk WP, Taylor GM (1971) An immunocolloid method for the electron microscope. Immunochemistry 8(11):1081–1083

    Article  CAS  PubMed  Google Scholar 

  72. Lee A, Rosin DL, Van Bockstaele EJ (1998) Ultrastructural evidence for prominent postsynaptic localization of alpha2C-adrenergic receptors in catecholaminergic dendrites in the rat nucleus locus coeruleus. J Comp Neurol 394(2):218–229

    Article  CAS  PubMed  Google Scholar 

  73. Reyes BA et al (2014) Using high resolution imaging to determine trafficking of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Life Sci 112(1–2):2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176(4042):1416–1417

    Article  CAS  PubMed  Google Scholar 

  75. Aldes LD, Boone TB (1984) A combined flat-embedding, HRP histochemical method for correlative light and electron microscopic study of single neurons. J Neurosci Res 11(1):27–34

    Article  CAS  PubMed  Google Scholar 

  76. Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26(2):106–117

    Article  CAS  PubMed  Google Scholar 

  77. Carson KA, Mesulam MM (1982) Electron microscopic demonstration of neural connections using horseradish peroxidase: a comparison of the tetramethylbenzidine procedure with seven other histochemical methods. J Histochem Cytochem 30(5):425–435

    Article  CAS  PubMed  Google Scholar 

  78. Carson KA, Mesulam MM (1982) Ultrastructural evidence in mice that transganglionically transported horseradish peroxidase-wheat germ agglutinin conjugate reaches the intraspinal terminations of sensory neurons. Neurosci Lett 29(3):201–206

    Article  CAS  PubMed  Google Scholar 

  79. Kravets JL et al (2015) Direct targeting of peptidergic amygdalar neurons by noradrenergic afferents: linking stress-integrative circuitry. Brain Struct Funct 220(1):541–558

    Article  CAS  PubMed  Google Scholar 

  80. Reyes BA et al (2011) Amygdalar peptidergic circuits regulating noradrenergic locus coeruleus neurons: linking limbic and arousal centers. Exp Neurol 230(1):96–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Van Bockstaele EJ et al (1991) Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat. J Comp Neurol 309(3):305–327

    Article  PubMed  Google Scholar 

  82. Schmued LC, Fallon JH (1986) Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res 377(1):147–154

    Article  CAS  PubMed  Google Scholar 

  83. Gonatas NK et al (1979) Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport. J Histochem Cytochem 27(3):728–734

    Article  CAS  PubMed  Google Scholar 

  84. Schwab ME, Javoy-Agid F, Agid Y (1978) Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res 152(1):145–150

    Article  CAS  PubMed  Google Scholar 

  85. Prujansky A, Ravid A, Sharon N (1978) Cooperativity of lectin binding to lymphocytes, and its relevance to mitogenic stimulation. Biochim Biophys Acta 508(1):137–146

    Article  CAS  PubMed  Google Scholar 

  86. Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 290(2):219–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reyes BA et al (2005) Hypothalamic projections to locus coeruleus neurons in rat brain. Eur J Neurosci 22(1):93–106

    Article  PubMed  Google Scholar 

  88. Pickel VM et al (1996) GABAergic neurons in rat nuclei of solitary tracts receive inhibitory-type synapses from amygdaloid efferents lacking detectable GABA-immunoreactivity. J Neurosci Res 44(5):446–458

    Article  CAS  PubMed  Google Scholar 

  89. Wouterlood FG, Jorritsma-Byham B (1993) The anterograde neuroanatomical tracer biotinylated dextran-amine: comparison with the tracer Phaseolus vulgaris-leucoagglutinin in preparations for electron microscopy. J Neurosci Methods 48(1–2):75–87

    Article  CAS  PubMed  Google Scholar 

  90. Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41(3):239–254

    Article  CAS  PubMed  Google Scholar 

  91. McGovern AE et al (2012) Anterograde neuronal circuit tracing using a genetically modified herpes simplex virus expressing EGFP. J Neurosci Methods 209(1):158–167

    Article  PubMed  Google Scholar 

  92. Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103(1):63–71

    Article  CAS  PubMed  Google Scholar 

  93. Chamberlin NL et al (1998) Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res 793(1–2):169–175

    Article  CAS  PubMed  Google Scholar 

  94. Deller T, Naumann T, Frotscher M (2000) Retrograde and anterograde tracing combined with transmitter identification and electron microscopy. J Neurosci Methods 103(1):117–126

    Article  CAS  PubMed  Google Scholar 

  95. Kohler C, Chan-Palay V, Wu JY (1984) Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. Anat Embryol (Berl) 169(1):41–44

    Article  CAS  Google Scholar 

  96. Germroth P, Schwerdtfeger WK, Buhl EH (1989) GABAergic neurons in the entorhinal cortex project to the hippocampus. Brain Res 494(1):187–192

    Article  CAS  PubMed  Google Scholar 

  97. Van Bockstaele EJ, Pickel VM (1995) GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res 682(1–2):215–221

    Article  PubMed  Google Scholar 

  98. Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20(10):3864–3873

    CAS  PubMed  Google Scholar 

  99. Lubin M, Leonard CS, Aoki C (1998) Preservation of ultrastructure and antigenicity for EM immunocytochemistry following intracellular recording and labeling of single cortical neurons in brain slices. J Neurosci Methods 81(1–2):91–102

    Article  CAS  PubMed  Google Scholar 

  100. Kaneko T et al (2000) Predominant information transfer from layer III pyramidal neurons to corticospinal neurons. J Comp Neurol 423(1):52–65

    Article  CAS  PubMed  Google Scholar 

  101. Ralston HJ III et al (1984) Morphology and synaptic relationships of physiologically identified low-threshold dorsal root axons stained with intra-axonal horseradish peroxidase in the cat and monkey. J Neurophysiol 51(4):777–792

    PubMed  Google Scholar 

  102. Wilson JR, Friedlander MJ, Sherman SM (1984) Fine structural morphology of identified X- and Y-cells in the cat’s lateral geniculate nucleus. Proc R Soc Lond B Biol Sci 221(1225):411–436

    Article  CAS  PubMed  Google Scholar 

  103. Tasker JG, Hoffman NW, Dudek FE (1991) Comparison of three intracellular markers for combined electrophysiological, morphological and immunohistochemical analyses. J Neurosci Methods 38(2–3):129–143

    Article  CAS  PubMed  Google Scholar 

  104. Branchereau P et al (1996) Pyramidal neurons in rat prefrontal cortex show a complex synaptic response to single electrical stimulation of the locus coeruleus region: evidence for antidromic activation and GABAergic inhibition using in vivo intracellular recording and electron microscopy. Synapse 22(4):313–331

    Article  CAS  PubMed  Google Scholar 

  105. Hamos JE (1990) Synaptic circuitry identified by intracellular labeling with horseradish peroxidase. J Electron Microsc Tech 15(4):369–376

    Article  CAS  PubMed  Google Scholar 

  106. Pickel VM et al (2006) Dopamine D1 receptors co-distribute with N-methyl-D-aspartic acid type-1 subunits and modulate synaptically-evoked N-methyl-D-aspartic acid currents in rat basolateral amygdala. Neuroscience 142(3):671–690

    Article  CAS  PubMed  Google Scholar 

  107. Branchereau P et al (1995) Ultrastructural characterization of neurons recorded intracellularly in vivo and injected with lucifer yellow: advantages of immunogold-silver vs. immunoperoxidase labeling. Microsc Res Tech 30(5):427–436

    Article  CAS  PubMed  Google Scholar 

  108. Cowan RL et al (1994) Analysis of synaptic inputs and targets of physiologically characterized neurons in rat frontal cortex: combined in vivo intracellular recording and immunolabeling. Synapse 17(2):101–114

    Article  CAS  PubMed  Google Scholar 

  109. Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Saito T, Keino H (1976) Acrolein as a fixative for enzyme cytochemistry. J Histochem Cytochem 24(12):1258–1269

    Article  CAS  PubMed  Google Scholar 

  111. Connolly CN et al (1994) Transport into and out of the Golgi complex studied by transfecting cells with cDNAs encoding horseradish peroxidase. J Cell Biol 127(3):641–652

    Article  CAS  PubMed  Google Scholar 

  112. Shu X et al (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9(4):e1001041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Martell JD et al (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30(11):1143–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bishop D et al (2011) Near-infrared branding efficiently correlates light and electron microscopy. Nat Methods 8(7):568–570

    Article  CAS  PubMed  Google Scholar 

  115. Parsons DF et al (1974) Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv Biol Med Phys 15:161–270

    Article  CAS  PubMed  Google Scholar 

  116. Dubochet J (2012) Cryo-EM—the first thirty years. J Microsc 245(3):221–224

    Article  CAS  PubMed  Google Scholar 

  117. Mayer E, Brüggeller P (1980) Complete vitrification in pure liquid water and dilute aqueous solutions. Nature 288:569–571

    Article  Google Scholar 

  118. Dubochet J, McDowall AW (1981) Vitrification of pure water for electron microscopy. J Microsc 124:RP3–RP4

    Article  Google Scholar 

  119. Dubochet J et al (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21(2):129–228

    Article  CAS  PubMed  Google Scholar 

  120. Al-Amoudi A et al (2004) Cryo-electron microscopy of vitreous sections. EMBO J 23(18):3583–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. McDonald KL, Auer M (2006) High-pressure freezing, cellular tomography, and structural cell biology. Biotechniques 41(2):137, 139, 141 passim

    Google Scholar 

  122. Korogod N, Petersen C, Knott GW (2015) Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. Elife 4

    Google Scholar 

  123. Studer D et al (2014) Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nat Protoc 9(6):1480–1495

    Article  CAS  PubMed  Google Scholar 

  124. White EL, Hersch SM (1982) A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex. J Neurocytol 11(1):137–157

    Article  CAS  PubMed  Google Scholar 

  125. Hayworth KJ et al (2014) Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front Neural Circuits 8:68

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kevin LG (2006) Comment on “Effects of short vs. prolonged mechanical ventilation on antioxidant systems in piglet diaphragm” by Jaber et al. Intensive Care Med 32(9):1446, author reply 1447

    Article  PubMed  Google Scholar 

  127. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2(11):e329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Wanner AA, Kirschmann MA, Genoud C (2015) Challenges of microtome-based serial block-face scanning electron microscopy in neuroscience. J Microsc 259(2):137–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mikula S, Binding J, Denk W (2012) Staining and embedding the whole mouse brain for electron microscopy. Nat Methods 9(12):1198–1201

    Article  CAS  PubMed  Google Scholar 

  130. Mikula S, Denk W (2015) High-resolution whole-brain staining for electron microscopic circuit reconstruction. Nat Methods 12(6):541–546

    Article  CAS  PubMed  Google Scholar 

  131. Nogales E, Scheres SH (2015) Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol Cell 58(4):677–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fernandez-Busnadiego R et al (2011) Insights into the molecular organization of the neuron by cryo-electron tomography. J Electron Microsc (Tokyo) 60(Suppl 1):S137–S148

    Article  CAS  Google Scholar 

  133. Lucic V et al (2007) Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography. J Struct Biol 160(2):146–156

    Article  PubMed  Google Scholar 

  134. Shahmoradian SH et al (2014) Preparation of primary neurons for visualizing neurites in a frozen-hydrated state using cryo-electron tomography. J Vis Exp 84:e50783

    PubMed  Google Scholar 

  135. Alzheimer’s Association (2015) 2015 Alzheimer’s disease facts and figures. ALzheimers Dement 11:332–384

    Article  Google Scholar 

  136. Clare R et al (2010) Synapse loss in dementias. J Neurosci Res 88(10):2083–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Harris KM et al (2015) A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development. Sci Data 2:150046

    Article  PubMed  PubMed Central  Google Scholar 

  138. Alonso-Nanclares L et al (2013) Synaptic changes in the dentate gyrus of APP/PS1 transgenic mice revealed by electron microscopy. J Neuropathol Exp Neurol 72(5):386–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kuwajima M, Spacek J, Harris KM (2013) Beyond counts and shapes: studying pathology of dendritic spines in the context of the surrounding neuropil through serial section electron microscopy. Neuroscience 251:75–89

    Article  CAS  PubMed  Google Scholar 

  140. Nuntagij P et al (2009) Amyloid deposits show complexity and intimate spatial relationship with dendrosomatic plasma membranes: an electron microscopic 3D reconstruction analysis in 3xTg-AD mice and aged canines. J Alzheimers Dis 16(2):315–323

    CAS  PubMed  Google Scholar 

  141. Fiala JC et al (2007) Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments. Brain Struct Funct 212(2):195–207

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by PHS grants DA09082 and DA020129. We are grateful for the valuable information provided by Zeiss and FEI companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth J. Van Bockstaele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, J., Reyes, B.A.S., Ross, J.A., Trovillion, V., Van Bockstaele, E.J. (2016). Advances in Neuroscience Using Transmission Electron Microscopy: A Historical Perspective. In: Van Bockstaele, E. (eds) Transmission Electron Microscopy Methods for Understanding the Brain. Neuromethods, vol 115. Humana Press, New York, NY. https://doi.org/10.1007/7657_2016_101

Download citation

  • DOI: https://doi.org/10.1007/7657_2016_101

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3638-0

  • Online ISBN: 978-1-4939-3640-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics