Skip to main content

Quantitative Profiling of Reversible Cysteome Modification Under Nitrosative Stress

  • Protocol
  • First Online:
  • 759 Accesses

Part of the book series: Neuromethods ((NM,volume 114))

Abstract

Reversible modifications of protein cysteine residues via S-nitrosylation and S-oxidation via disulfide formation are posttranslational modifications (PTM) regulating a broad range of protein activities and cellular signaling. Dysregulated protein nitrosothiol and disulfide formation have been implicated in pathogenesis of neurodegenerative disorders. Under nitrosative or nitroxidative stress, both nitrosylation and oxidation can theoretically occur at redox-sensitive cysteine residues, mediating thiol-regulated stress response. However, few detection strategies address both modifications. Nonquantitative approaches used to observe S-nitrosylation, regardless of unmodified and oxidized thiol forms, may lead to causal conclusions about the importance of protein nitrosothiol in NO-mediated signaling, regulation, and stress response. To observe quantitatively the modification spectrum of the cysteome, we developed a mass spectrometry-based approach, denoted as d-SSwitch, using isotopic labeling and shotgun proteomics to simultaneously identify and quantify different modification states at individual cysteine residues. Both recombinant protein and intact neuroblastoma cells were analyzed by d-SSwitch after treatment with nitrosothiol or NO. In proteins identified to be modified after nitrosothiol treatment, S-oxidation was always observed concomitant with S-nitrosylation and was quantitatively dominant. Herein, we describe the detailed procedures of d-SSwitch and important notes in practice.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Miseta A, Csutora P (2000) Relationship between the occurance of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17(8):1232–1239

    Article  CAS  PubMed  Google Scholar 

  2. O'Brian CA, Chu F (2005) Post-translational disulfide modifications in cell signaling – role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission. Free Radic Res 39(5):471–480. doi:10.1080/10715760500073931

    Article  PubMed  Google Scholar 

  3. Paulsen CE, Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5(1):47–62. doi:10.1021/cb900258z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bindoli A, Rigobello MP (2013) Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 18(13):1557–1593. doi:10.1089/ars.2012.4655

    Article  CAS  PubMed  Google Scholar 

  5. Gould N, Doulias PT, Tenopoulou M, Raju K, Ischiropoulos H (2013) Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem 288(37):26473–26479. doi:10.1074/jbc.R113.460261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Butler AR, Flitney FW, Williams DL (1995) NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: a chemist’s perspective. Trends Pharmacol Sci 16(1):18–22

    Article  CAS  PubMed  Google Scholar 

  7. Tejero J, Basu S, Helms C, Hogg N, King SB, Kim-Shapiro DB, Gladwin MT (2012) Low NO concentration dependence of reductive nitrosylation reaction of hemoglobin. J Biol Chem 287(22):18262–18274. doi:10.1074/jbc.M111.298927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams DLH (1985) S-Nitrosation and the reactions of S-nitroso compounds. Chem Soc Rev 14(2):171–196

    Article  CAS  Google Scholar 

  9. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166. doi:10.1038/nrm1569

    Article  CAS  PubMed  Google Scholar 

  10. Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA (2009) Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 11(11):2717–2739. doi:10.1089/ARS.2009.2721

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Chen C, Loake GJ, Chu C (2010) Nitric oxide: promoter or suppressor of programmed cell death? Protein Cell 1(2):133–142. doi:10.1007/s13238-010-0018-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burke CL, Stern DF (1998) Activation of Neu (ErbB-2) mediated by disulfide bond-induced dimerization reveals a receptor tyrosine kinase dimer interface. Mol Cell Biol 18(9):5371–5379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borloo J, Geldhof P, Peelaers I, Van Meulder F, Ameloot P, Callewaert N, Vercruysse J, Claerebout E, Strelkov SV, Weeks SD (2013) Structure of Ostertagia ostertagi ASP-1: insights into disulfide-mediated cyclization and dimerization. Acta Crystallogr D Biol Crystallogr 69(Pt 4):493–503. doi:10.1107/S0907444912050019

    Article  CAS  PubMed  Google Scholar 

  14. Mieyal JJ, Chock PB (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on s-glutathionylation. Antioxid Redox Signal 16(6):471–475. doi:10.1089/ars.2011.4454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stamler JS, Hausladen A (1998) Oxidative modifications in nitrosative stress. Nat Struct Biol 5(4):247–249

    Article  CAS  PubMed  Google Scholar 

  16. Wang YT, Piyankarage SC, Williams DL, Thatcher GR (2014) Proteomic profiling of nitrosative stress: protein S-oxidation accompanies S-nitrosylation. ACS Chem Biol 9(3):821–830. doi:10.1021/cb400547u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu XM, Tompkins RG, Fischman AJ (2013) Nitric oxide activates intradomain disulfide bond formation in the kinase loop of Akt1/PKBalpha after burn injury. Int J Mol Med 31(3):740–750. doi:10.3892/ijmm.2013.1241

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lancaster J (2004) Nitroxidation: the dominant process of reactive nitrogen species chemistry under biological conditions. Free Radic Biol Med 37(S1):S98

    Google Scholar 

  19. Townsend DM, Manevich Y, He L, Xiong Y, Bowers RR Jr, Hutchens S, Tew KD (2009) Nitrosative stress-induced s-glutathionylation of protein disulfide isomerase leads to activation of the unfolded protein response. Cancer Res 69(19):7626–7634, doi:0008-5472.CAN-09-0493 [pii] 10.1158/0008-5472.CAN-09-0493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Keszler A, Zhang Y, Hogg N (2009) Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: how are S-nitrosothiols formed? Free Radic Biol Med 48(1):55–64, doi:S0891-5849(09)00652-2 [pii] 10.1016/j.freeradbiomed.2009.10.026

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nakamura T, Tu S, Akhtar Mohd W, Sunico Carmen R, Okamoto S-i, Lipton Stuart A (2013) Aberrant protein S-nitrosylation in neurodegenerative diseases. Neuron 78(4):596–614. doi:10.1016/j.neuron.2013.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao QF, Yu JT, Tan L (2014) S-Nitrosylation in Alzheimer’s disease. Mol Neurobiol. doi:10.1007/s12035-014-8672-2

    PubMed Central  Google Scholar 

  23. Mossuto MF (2013) Disulfide bonding in neurodegenerative misfolding diseases. Int J Cell Biol 2013:318319. doi:10.1155/2013/318319

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sabens Liedhegner EA, Gao XH, Mieyal JJ (2012) Mechanisms of altered redox regulation in neurodegenerative diseases – focus on S-glutathionylation. Antioxid Redox Signal 16(6):543–566. doi:10.1089/ars.2011.4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Couvertier SM, Zhou Y, Weerapana E (2014) Chemical-proteomic strategies to investigate cysteine posttranslational modifications. Biochim Biophys Acta 1844(12):2315–2330. doi:10.1016/j.bbapap.2014.09.024

    Article  CAS  PubMed  Google Scholar 

  26. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):PL1

    CAS  PubMed  Google Scholar 

  27. Qu Z, Meng F, Bomgarden RD, Viner RI, Li J, Rogers JC, Cheng J, Greenlief CM, Cui J, Lubahn DB, Sun GY, Gu Z (2014) Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents. J Proteome Res 13(7):3200–3211. doi:10.1021/pr401179v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fares A, Nespoulous C, Rossignol M, Peltier JB (2014) Simultaneous identification and quantification of nitrosylation sites by combination of biotin switch and ICAT labeling. Methods Mol Biol 1072:609–620. doi:10.1007/978-1-62703-631-3_41

    Article  CAS  PubMed  Google Scholar 

  29. Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105(24):8197–8202. doi:10.1073/pnas.0707723105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sinha V, Wijewickrama GT, Chandrasena RE, Xu H, Edirisinghe PD, Schiefer IT, Thatcher GR (2010) Proteomic and mass spectroscopic quantitation of protein S-nitrosation differentiates NO-donors. ACS Chem Biol 5(7):667–680. doi:10.1021/cb100054m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cesareo E, Parker LJ, Pedersen JZ, Nuccetelli M, Mazzetti AP, Pastore A, Federici G, Caccuri AM, Ricci G, Adams JJ, Parker MW, Lo Bello M (2005) Nitrosylation of human glutathione transferase P1-1 with dinitrosyl diglutathionyl iron complex in vitro and in vivo. J Biol Chem 280(51):42172–42180. doi:10.1074/jbc.M507916200

    Article  CAS  PubMed  Google Scholar 

  32. Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD (2009) Novel role for glutathione S-transferase pi Regulator of protein S-glutathionylation following oxidative and nitrosative stress. J Biol Chem 284(1):436–445, doi:M805586200 [pii] 10.1074/jbc.M805586200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laborde E (2010) Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ 17(9):1373–1380. doi:10.1038/cdd.2010.80

    Article  CAS  PubMed  Google Scholar 

  34. Pathi SS, Jutooru I, Chadalapaka G, Sreevalsan S, Anand S, Thatcher GR, Safe S (2011) GT-094, a NO-NSAID, inhibits colon cancer cell growth by activation of a reactive oxygen species-microRNA-27a: ZBTB10-specificity protein pathway. Mol Cancer Res 9(2):195–202. doi:10.1158/1541-7786.MCR-10-0363

    Article  CAS  PubMed  Google Scholar 

  35. Meah Y, Brown BJ, Chakraborty S, Massey V (2001) Old yellow enzyme: reduction of nitrate esters, glycerin trinitrate, and propylene 1,2-dinitrate. Proc Natl Acad Sci U S A 98(15):8560–8565. doi:10.1073/pnas.151249098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andrei D, Salmon DJ, Donzelli S, Wahab A, Klose JR, Citro ML, Saavedra JE, Wink DA, Miranda KM, Keefer LK (2010) Dual mechanisms of HNO generation by a nitroxyl prodrug of the diazeniumdiolate (NONOate) class. J Am Chem Soc 132(46):16526–16532. doi:10.1021/ja106552p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cook JA, Kim SY, Teague D, Krishna MC, Pacelli R, Mitchell JB, Vodovotz Y, Nims RW, Christodoulou D, Miles AM, Grisham MB, Wink DA (1996) Convenient colorimetric and fluorometric assays for S-nitrosothiols. Anal Biochem 238(2):150–158. doi:10.1006/abio.1996.0268

    Article  CAS  PubMed  Google Scholar 

  38. Chang M, Shin YG, van Breemen RB, Blond SY, Bolton JL (2001) Structural and functional consequences of inactivation of human glutathione S-transferase P1-1 mediated by the catechol metabolite of equine estrogens, 4-hydroxyequilenin. Biochemistry 40(15):4811–4820

    Article  CAS  PubMed  Google Scholar 

  39. Chang M, Bolton JL, Blond SY (1999) Expression and purification of hexahistidine-tagged human glutathione S-transferase P1-1 in Escherichia coli. Protein Expr Purif 17(3):443–448

    Article  CAS  PubMed  Google Scholar 

  40. Arnelle DR, Stamler JS (1995) NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 318(2):279–285. doi:10.1006/abbi.1995.1231

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Ting Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, YT., Piyankarage, S.C., Thatcher, G.R.J. (2016). Quantitative Profiling of Reversible Cysteome Modification Under Nitrosative Stress. In: Grant, J., Li, H. (eds) Analysis of Post-Translational Modifications and Proteolysis in Neuroscience. Neuromethods, vol 114. Humana Press, New York, NY. https://doi.org/10.1007/7657_2015_88

Download citation

  • DOI: https://doi.org/10.1007/7657_2015_88

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3470-6

  • Online ISBN: 978-1-4939-3472-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics